PET-Guided Treatment Approach for Advanced Stage Classical Hodgkin Lymphoma

Ranjana H. Advani, MD
Stanford Cancer Institute
Management of Hodgkin Lymphoma

Learning Objectives

• Review risk adapted strategies based on PET/CT response for optimizing front line management

• Evaluate data on incorporation of new agents in front line therapy
Hodgkin Lymphoma Clinical Trial Treatment Groups

Europe vs North America

<table>
<thead>
<tr>
<th>Europe (GSHG, GELA, EORTC)</th>
<th>Stage</th>
<th>USA/Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early favorable</td>
<td>CS I,IIA,B</td>
<td>Limited stage</td>
</tr>
<tr>
<td></td>
<td>No risk factors</td>
<td></td>
</tr>
<tr>
<td>Early unfavorable</td>
<td>CS I,IIA,B</td>
<td></td>
</tr>
<tr>
<td>(Intermediate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced stage</td>
<td>CS III – IV, Selected CS IIIB</td>
<td>Advanced stage</td>
</tr>
</tbody>
</table>

Markers:
- B Sx
- ESR > 50 mm
- Bulky disease
- >2-3 nodal sites
- Men over 40 y of age

Courtesy Dr Connors
Management of Hodgkin Lymphoma

Expected treatment outcomes and goals of Rx - 2015

<table>
<thead>
<tr>
<th>Stage</th>
<th>Cure Rate</th>
<th>Goals of Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable (stage I-II)</td>
<td>90%</td>
<td>↓ toxicity</td>
</tr>
<tr>
<td>Unfavorable (stage I, II with risk factors*)</td>
<td>80-85%</td>
<td>↑ efficacy</td>
</tr>
<tr>
<td>Advanced stage (bulky IIB, III, IV)</td>
<td>75%</td>
<td>↑ efficacy</td>
</tr>
</tbody>
</table>

* Large mediastinal mass, E lesions, ≥ 3 nodal sites, ↑ ESR; age >40, MC histology
PET/CT Imaging
Potential Uses for Hodgkin Lymphoma

• Staging: YES
• Response assessment: YES
 – End of therapy (EOT)

• Treatment modification based on PET/CT
 – EOT
 – Interim

• Can modification of Rx based on EOT or interim PET/CT have the potential to select pts for Rx escalation or de-escalation?
• Do these modifications have the potential to improve outcomes?
Advanced Hodgkin Lymphoma

Interim PET Imaging after ABVD x 2

Gallamini et al JCO 2007
Advanced Hodgkin Lymphoma
Interim PET Imaging after ABVD x 2

Deauville 5-point scoring system

Score Uptake
1 No uptake
2 Uptake ≤ mediastinum
3 Uptake > mediastinum but ≤ liver
4 Uptake moderately higher than liver
5 Uptake markedly higher than liver and/or new lesions
X New areas of uptake unlikely to be related to lymphoma

J Clin Oncol 2014; 32 (27): 3048-3058

Gallamini et al JCO 2007
Predictive value of interim PET/CT varies according to the criteria used

Negative PET

- 90 patients
- Initial interpretation
 - 66% PPD or relapse 7 (12%)
 - 59 negative interim PET

Positive PET

- 31 positive interim PET
 - 34% PPD or relapse 6 (19%)

- IHP criteria
 - 71% PPD or relapse 7 (11%)
 - 59 + 5 = 64 negative interim PET (60% PPD or relapses)
 - 5

- Gallamini criteria
 - 78% PPD or relapse 7 (10%)
 - 59 + 11 = 70 negative interim PET (60% PPD or relapses)
 - 11

- 5-point scale
 - 88% PPD or relapse 7 (8%)
 - 59 + 29 = 78 interim PET ≤ 2.3 or 4 (620 PPD or relapses)
 - 20

PPD: Primary progressive disease.
Variation in PFS Among the Same Patients Based on Differences in PET Definitions

The prognostic value of interim PET scan in patients with classical Hodgkin lymphoma

MD Anderson Retrospective study using Deauville Criteria

Oki et al Br J Hematol 2014;165:112-116
Advanced Hodgkin Lymphoma

ABVD chemotherapy

A standard therapy based on balance of efficacy and toxicity

Effect of Initial Rx Strategy on OS of pts with Advanced-Stage HL: A Systematic Review and Network Meta-analysis

5 year OS with ABVD, according to year of recruitment

- Position of each circle: proportion of pts achieving 5 year OS
- Size of the circle: weight in the meta-regression
- Dashed horizontal straight line: proportion of pts given ABVD with OS 5 y (used as ref)
- Solid line: pooled 5 year survival for ABVD

Skoetz et al The Lancet Oncology, 2013, 943 - 952
Advanced Hodgkin Lymphoma

• Esc BEACOPP(BE): Intense German Regimen
 – HD 9 (8 cycles) + RT to sites > 2.5 cm
 – HD 12 (4 cycles BE + 4S) + RT
 – HD 15 (6 cycles BE), RT only to PET + sites at end of chemo.
 – All equally effective. HD 15 least toxicity
 – PFS > ~ 75% even in high risk group

• Challenges the role of ABVD as a standard
BEACOPP vs ABVD
Randomized Trials

• HL 2000 trial (GISL)
 – BEACOPP\(_{\text{other}}\) (4B\(_{\text{esc}}\) + 2B\(_{\text{bas}}\))

• Italian cooperative group trial
 – BEACOPP\(_{\text{esc}}\) x 4 + BEACOPP\(_{\text{bas}}\) x 4 \((4+4)\)

• LYSA H34 randomized trial
 – BEACOPP\(_{\text{esc}}\) x 4 + BEACOPP\(_{\text{bas}}\) x 4 \((4+4)\)

• EORTC Intergroup 20012 trial
 – BEACOPP\(_{\text{esc}}\) x 4 + BEACOPP\(_{\text{bas}}\) x 4 \((4+4)\)

• NONE have used BEACOPP\(_{\text{esc}}\) x 6 which is the current recommended standard by the GHSG
Advanced Hodgkin Lymphoma
Italian Trial: BEACOPP (4B_{esc} + 4B_{std}) vs ABVD
Michelangelo Foundation; Gruppo Italiano di Terapie Innovative nei Linfomi;
Intergruppo Italiano Linfomi

Freedom-from First Progression

Overall Survival

Viviani S et al. NEJM 2011
Advanced Hodgkin Lymphoma

Italian HD2000: BEACOPP ($4B_{esc} + 2B_{bas}$) vs ABVD (IPS ≥ 3)

FFS

OS

Only in IPS ≥ 3

5-yr PFS: 68%, 81%, 78%
(ABVD, BEACOPP, CEC; P=.038): IPS 0-2 P=.125, IPS 3-7 P=.038

5-yr OS: 84%, 92%, 91%
(ABVD, BEACOPP, CEC; P=NS)

Federico et al. JCO 2009
Overall survival according to TRM risk score
esc BEACOPP is not for everybody

3 Point Score

Points: 0 1 2
Age: < 40 41-49 ≥ 50
PS: 0-1 2

Neutropenic infection commonest cause of death. 70% in cycle 1.

Wongso D et al. JCO 2013
Escalated BEACOPP and Fertility

Probability of resumption of menses is dependent on age and # of cycles of chemotherapy

HD 14: 2 ABVD + 2 Esc BEACOPP
HD 15: 6 Esc BEACOPP

Likelihood of amenorrhea at 4 y increases with use of more cycles of Esc BEACOPP

Behringer, et al, JCO 2012
Fertility parameters in men receiving ABVD or Esc BEACOPP

Behringer et al, JCO 2012
Advanced Hodgkin Lymphoma

Summary of BEACOPP data

• PFS is superior with Esc BEACOPP c/w ABVD
 – 4 randomized trials; HR ~0.5
 – PFS benefit across all IPS groups
 – Long term durability is ?? (long term follow up of Italian study)

• OS advantage is challenging to establish.
 – Esc BEACOPP x 8 superior to COPP/ABVD in HD9
 – No OS advantage with BEACOPP in 3 European studies versus ABVD
 – No study has used Esc BEACOPP x 6

• Toxicity issues
Advanced Hodgkin Lymphoma

Adapting therapy based on PET

<table>
<thead>
<tr>
<th>Study</th>
<th>Protocol Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD15</td>
<td>PET+ after Esc BEACOPP x 6 assigned to IFRT</td>
</tr>
<tr>
<td>HD18</td>
<td>Esc BEACOPP x 2:</td>
</tr>
<tr>
<td></td>
<td>PET+ randomized to R- Esc BEACOPP vs Esc BEACOPP</td>
</tr>
<tr>
<td></td>
<td>PET- randomized to 4 vs 8 Esc BEACOPP</td>
</tr>
<tr>
<td>UK RATHL</td>
<td>ABVD x 2: Escalation to Esc BEACOPP if PET+</td>
</tr>
<tr>
<td></td>
<td>PET- randomized to ABVD vs AVD.</td>
</tr>
<tr>
<td>US Intergroup</td>
<td>ABVD x2: Escalation to Esc BEACOPP if PET+</td>
</tr>
</tbody>
</table>
GHSG study for advanced-stage HL (HD15)

PET assessment of residual tissue in advanced-stage HL

CS IIB with RF a, b; CS III and IV

- 8x BEACOPP escalated EPO/Placebo
- 6x BEACOPP escalated EPO/Placebo
- 6x BEACOPP14 EPO/Placebo

Restaging

PR & residual disease ≥ 2.5 cm

Risk factors:
- a) Large mediastinal mass
- b) Extranodal disease

- No
- Yes

PET -

Follow-up

PET +

30 Gy RT to residual sites

Engert et al Lancet 2012
PET-guided radiotherapy in advanced stage HL (HD15 trial):

Patients with residual FDG-avid masses still have excellent outcome with use of IFRT

Only 11% got RT

Engert et al Lancet, 2012
Addition of Rituximab to BEACOPP_{escalated} to Improve the Outcome of Early Interim PET Positive Advanced Stage HL: Second Planned Interim Analysis of the HD18 Study. (ASH 2014 Borchmann et al, abstract 500)

- PET-2 positive patients have a poorer outcome
- Targeting the microenvironment in HL with the anti-CD20 antibody rituximab had been shown to be active in clinical studies both as single agent and in combination with ABVD
 - Younes et al. BLOOD 2012
- QS: Rituximab as a combination partner for BEACOPP in early interim PET positive patients (Improve 5 y PFS from 68% to 83%)?
- Treatment reduction for early interim PET negative patients ie reduce number of cycles of esc BEACOPP.
Conclusions

- After a negative interim FDG-PET scan it is safe to omit bleomycin from subsequent cycles, without consolidation radiotherapy
- Omission of bleomycin reduces toxicity, especially dyspnoea, thromboembolism and neutropenic fever
- Escalated therapy for interim FDG-PET positive patients gives good subsequent response rates, and promising PFS results (70% 3 year PFS for PET-3 negatives)
- The ‘false-negative’ rate for interim FDG-PET is higher among patients with more advanced stage disease
- Overall results from this study appear better than our previous trials, using more selective chemotherapy and less radiotherapy
A Phase II US Intergroup Trial of Response-Adapted Therapy of Stage III-IV HL Using Early Interim FDG-PET Imaging (SWOG S0816)

Preliminary Results

HIV negative

Register → ABVD x 2

PET-1

PET 2- → ABVD x 4 82%

PET 2+ → BEACOPP_{escalated} x 6

IPS 0-7, No RT either arm

Goals:
- Increase 2-yr PFS from historical value of 70% with ABVD to 78% with PET response adapted therapy.
- Increase 2-yr PFS of PET2+ from 15-30% if continued on ABVD to 48% with PET response adapted therapy.

Courtesy Dr Johnson ICML 2015
Incorporation of new agents in front line therapy
Brentuximab Vedotin (SGN-35)

- CD30 Antigen
 - Transmembrane glycoprotein receptor, TNF receptor superfamily
 - Cell surface Ag highly expressed in Hodgkin & ALC Lymphoma
 - Normal distribution restricted to activated T and B cells, macrophages
- SGN-35 antibody-drug conjugate
 - CD30-targeted antibody (cAC10) to an auristatin (MMAE), an anti-tubulin agent
- Selective apoptosis in HL and ALCL
 - Binds to CD30
 - Becomes internalized
 - Releases MMAE
- Phase I q 3 wk SGN-35 trial
 - MTD 1.8 mg/m2, ORR 54% (CR 32%)
 - DLTs neutropenia, hyperglycemia, unrelated ARF
Phase II Pivotal trial in relapsed HL
All ASCT failures

Younes et al JCO 2012
PFS and OS following treatment with Brentuximab Vedotin

Frontline Therapy with Brentuximab Vedotin Combined with ABVD or AVD in Pts with Newly Diagnosed Advanced Stage HL

- **Major Eligibility**
 - Treatment-naive HL patients
 - Age ≥ 18 to ≤ 60 years
 - Stage IIAX or Stage IIb-IV disease

- **Treatment Design**
 - 28-day cycles (6 cycles) with dosing on Days 1 and 15

Younes et al. Lancet Oncology 2013
Toxicity and Efficacy

Events generally occurred during Cycles 3–4

Two deaths were associated with pulmonary toxicity

Events resolved in 9 of 11 patients (82%)

Median time to resolution 2.6 weeks (range, 1.6 to 5 weeks)

Younes et al. Lancet Oncology 2013
Frontline Therapy with Brentuximab Vedotin Combined with ABVD or AVD in Pts with Newly Diagnosed Advanced Stage HL

Younes et al. Lancet Oncology 2013
Frontline Therapy with Brentuximab Vedotin Combined with ABVD or AVD in Pts with Newly Diagnosed Advanced Stage HL

Ongoing Phase III trial of ABVD vs. AVD + BV: ECHELON-1 for stage III-IV HL

Younes et al. Lancet Oncology 2013
Advanced Hodgkin Lymphoma
Take Home Message

• Newer criteria for PET/CT interpretation need to be used for risk adapted strategies
 – Dialog with nuclear medicine colleagues important
• The frontline treatment for advanced stage Hodgkin lymphoma remains ABVD
 – Brentuximab containing combinations under study, with AVD only
 – Escalation to esc BEACOPP if PET + after ABVD x 2 promising
 – Bleomycin can be omitted if PET negative after 2 cycles of ABVD
• No prospective data on other strategies (eg IFRT to +ve areas after ABVD x 6-8 as in GHSG HD15)
Management of Hodgkin Lymphoma

What is the optimal therapy for individual patients?

Highest cure rate with primary therapy

Fewest complications for optimal survivorship