

Integration of Novel Therapy Into Myeloma Management

Bortezomib, lenalidomide, thalidomide, bortezomib/doxorubicin, carfilzomib, pomalidomide, panobinostat, daratumumab, ixazomib, elotuzumab

Target MM in the BM microenvironment to overcome conventional drug resistance *in vitro* and *in vivo*

Effective in relapsed/refractory, relapsed, induction, consolidation, and maintenance therapy

16 FDA approvals (7 in 2015!) and median patient survival prolonged 3-4 fold

New approaches needed to treat and ultimately prevent relapse

nes Version 3.2016 oma
MULTIPLE MYELOMA
ptomatic) Myeloma ^{1,2} al protein iL; tein ≥500 mg/24 h ow plasma cells 10%–60% oma defining events or egative, assess for bone ole body MRI or PET/CT
Some studies have shown that patients with certain characteristics, including IgG levels is MV, Hernandez M, Giraldo P, et al. Lenalidomide plus dexamethasone for high-risk free light chain ratios (Dispienzeri A, Kyle R, Katzmann J, et al. Immunoglobulin free light tomatic) multiple myeloma. Blood 2008;117:857-890, have an increased risk of progression lassical definition of smoldering myeloma using certain tests such as plain x-rays is outdated. et as "asymptomatic" to having "active disease" are underway. ng Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;Vol MYEL-B his illustration may not be reproduced in any form without the express written permission of NCCM*.

Vaccines Targeting MM Specific Peptides in **Smoldering Multiple Myeloma** Goal is to prevent evolution of smoldering to active myeloma Cocktails of immunogenic HLA-A2-specific XBP1, CD138, CS1 peptides to induce MM-specific and HLA-restricted CTL responses Clinical trials (LLS TAP Program): Immune responses to vaccine in all patients including tetramer positive cells and type I cytokines Lenalidomide with vaccine augments these immune response Lenalidomide and PDL-1, HDAC 6i 241 with vaccine to induce memory Immune response against myeloma Bae et al, Leukemia 2011; 25:1610-9. Bae et al, Brit J Hematol 2011; 155: 349-61. Bae et al, Brit J Hematol 2012; 157: 687-701. Bae et al, Clin Can Res 2012; 17:4850-60. Bae et al, Leukemia 2015

Effects of HDACi 241 on MM Specific Cytotoxic T cells (MM CTLs)

Does not affect viability of CD3, CD4, CD8 T cells

Does not induce checkpoint inhibitors on MM CTLs

Increases costimulatory molecules, proliferation, Th-1 cytokine production, and cytotoxicity of MM CTLs

Increases central and effector memory MM CTL cytotoxicity, costimulatory molecules, and proliferation

Decreases regulatory T cells

International Staging System (ISS) for Myeloma

Stage	Criteria	Median Survival (mo)
I	β2m < 3.5 mg/L albumin <u>></u> 3.5 g/dL	62
*	Not stage I or III	44
III	β2m > 5.5 mg/L	29
	ng/L and albumin < 3.5 g/dL or 5.5 mg/dL, any albumin Greipp et	t al. J Clin Oncol 2005; 23: 341
Revised ISS (F	R-ISS) incorporates LDH and high	h risk FISH abnormalities
	Palumbo	et all J Clin Oncol 2015: 33: 2863

Chromosomes and Prognosis in Multiple Myeloma

For conventional low and high dose theapy:

Nonhyperdiploid worse prognosis than hyperdiploid t(11;14), hyperdiplody -standard risk t(4;14), t(14;16),t(14;20), del(17p), del(13q14)high risk

For novel treatments Bortezomib, but not lenalidomide, can at least partially overcome t(4;14), del(13q14)-

del(17p) p53 remains high risk

 CR Negative Immunofixation & < 5% PC in BM
 Stringent CR.....Normal FLC & no clonal PC by immunohistochemistry (Low sensitivity <10⁻²)
 Outside BMImaging techniques (MRI & CT-PET).

BM Level......Immunophenotypic remission (by multiparametric flow) Molecular remission (by sequencing)*

* Pitfalls: 1. Pattern of BM infiltration in MM is not uniform... The possibility of residual MM-PC in another territory cannot be excluded (false negative results).

2. Extramedullary relapses.

RVd versus Rd for Newly Diagnosed MM

	RVd	Rd
CR	15.7%	8.4%
VGPR	27.8%	23.4%
PR	38%	39.7%
ORR (PR or better)	81.5%	71.5%
SD	15.7%	24.3%
SD or better	97.2%	95.8%
PD or Death	2.8%	4.2%
		Durie et a

Bortezomib, lenalidomide and dexamethasone versus Lenalidomide and dexamethasone : Overall Survival 100% Median Deaths / N in Months VRd 76/242 75 (66, .) 80% Rd 100 / 229 64 (56, .) 60% LUU 40% HR = 0.709 (0.516, 0.973)* 20% Log-rank P value = 0.0250 (two sided)* 0% 24 48 72 96 0 Months from Registration Durie et al, ASH 2015

Phase III Maintenance Studies – Transplant Eligible Patients

Trial	Ν	Regimen	Outcomes
IFM 2005-02 ^[1]	614	Maintenance lenalidomide vs placebo following first or second ASCT	4-yr PFS: 60% vs 33%
CALGB 100104 ^[2]	460	Maintenance lenalidomide vs placebo after ASCT	Median TTP: 46 vs 27 mos
RV-MM-PI-209 ^[3]	402	MPR + maintenance lenalidomide vs MPR vs MEL200 + maintenance lenalidomide vs MEL200	Median PFS (R vs no R): 37 vs 26 mos 5-Yr OS (R vs no R): 75 vs 58 mos
HOVON-65 ^[4]	827	VAD vs PAD followed by HD melphalan and ASCT, then thalidomide or bortezomib as maintenance	Median PFS: 28 vs 35 mos CR/nCR: 15% vs 31%
Nordic MSG 15 ^[5]	370	Bortezomib x 21 wks vs no maintenance	≥ nCR: 45% vs 35%
 McCarthy PL, et al Boccadoro M, et al Sonneveld P, et al. 	. N Engl I. ASCO J Clin (I. 2012;366:1782-1791. J Med. 2012;366:1770-1781. 2013, abstr 8509 Dncol. 2012;30:2946-2955. 2013;121:4647-4654.	

ASCT and Maintenance Improve Outcome							
		ASCT		noAS	ст	р.	
• PFS, median		59 mos		42 m	os	0.01	
	ISS	5 /		STAND	ARD FISH		
	ASCT	noASCT	р.	ASCT	noASCT		
• PFS, median	60 mos	44 mos	0.05	69 mos	49 mos	0.04	
• 5-year OS	85%	72%	0.03	84%	72%	0.7	
	Mainte	enance	N	o mainten	ance		
ASCT	<u></u>			11		0.02	
PFS, median	62	mos		41 mos		0.02	
noASCT							
PFS, median5-year OS		mos 7%		21 mos 60%		0.01 0.008	
				Ce	errato et al, A	SH 201	

IFM 2009: Best Response						
	RVD arm N=350	Transplant arm N=350	p-value			
CR	49%	59%	٦			
VGPR	29%	29%	0.02			
PR	20%	11%				
<pre>PR</pre>	2%	1%				
At least VGPR	78%	88%	0.001			
Neg MRD by FCM, n (%)	228 (65%)	280 (80%)	0.001			
	Attal et al, ASH 2015					

Sequencing Distinguishes Outcome in FDM Negative Patients

Phase 1/2 Study of Carfilzomib, Lenalidomide, and Dexamethasone (CRd)

		ISS Stage		Cytogenetics		Carfil	zomib D	osage
Response, %	Overall (n=49)	l (n=20)	ll/lll (n=29)	Normal or Favorable (n=33)	Unfavorable (n=16)	20 mg/m ²	27 mg/m ²	36 mg/m²
ORR	98	90	97	91	100	100	100	88
VGPR	65	65	66	61	75	100	100	47
sCR, nCR, or CR	53	50	55	52	56	75	85	38

- Generally well tolerated and manageable side effects
- Grade 3/4 adverse events in ≥10% of pts
 - Hematologic: anemia, neutropenia, thrombocytopenia
 - Non-hematologic: hyperglycemia, dyspnea/CHF, HTN, deep vein thrombosis/ pulmonary embolism, renal dysfunction

Jakubowiak AJ et al. Blood 2012; 120: 1801.

NCCN National Comprehensive Cancer Network* NCCN Guideline Multiple Myelor	es Version 3.2016 na
MYELOM Exposure to myelotoxic agents (including alkylating age compromising stem-cell reserve prior to stem-cell harve	
Primary Therapy for Non-Transplant Candic (Assess for response after 2 cycles)	lates
Preferred Regimens:	Other Regimens:
 Bortezomib/dexamethasone Bortezomib/cyclophosphamide/ dexamethasone Bortezomib/lenalidomide/dexamethasone (category 1) 	 Dexamethasone (category 2B) Ixazomib/lenalidomide/dexamethasone Liposomal doxorubicin/vincristine/ dexamethasone (DVD) (category 2B) Melphalan/prednisone (MP)
• Lenalidomide/low-dose dexamethasone (category 1)	Thalidomide/dexamethasone (category 2B) Vincristine/doxorubicin/dexamethasone
Melphalan/prednisone/bortezomib (MPB) (category 1)	(VAD) (category 2B)
Melphalan/prednisone/lenalidomide (MPL) (category 1)	
Melphalan/prednisone/thalidomide (MPT)	
(category 1) © 2016 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this III To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.	MYEL-D ustration may not be reproduced in any form without the express written permission of NCCN [®] .

Impact of Novel Agents in the Treatment of Elderly Patients with Newly Diagnosed MM

Substantial improvements in PFS and OS

	Median PFS (mos)	Median OS (mos)
MP ¹⁻⁸	11–20	29.1–49.4
MPT ¹⁻⁶	15–27.5	29–51.6
VMP ^{7,8,11}	21.7–27.4	68.5% (3-yr OS)*
MPR-R ⁹	31	N/A
VMP-VT/VP ¹⁰	34	74% (3-yr OS)*
VMPT-VT ¹¹	37.2	85% (3-yr OS)*

¹Palumbo et al. Blood 2008; 112:3107–3114 ²Facon et al. Lancet 2007; 370:1209–1218 ³Hulin et al. J Clin Oncol 2009; 27:3664-70 ⁴Waage et al. Blood 2010; 116:1405-12 ⁵Wijermans et al. J Clin Oncol 2010; 28:3160-6 ⁶Beksac et al. Eur_J Haematol 2011;86:16-22 *Median OS not reached N/A: not available

⁷San Miguel et al. N Engl J Med 2008; 359(9): 906–917; Supplementary Appendix ⁸Mateos et al. J Clin Oncol 2010; 28(13): 2259-2266 ⁹Palumbo et al. ASH 2010 (Abstract 622) ¹⁰Mateos et al. Lancet Oncol 2010; 11(10): 934-941 ¹¹Palumbo et al. ASH 2010 (Abstract 620)

FIRST Trial: Len/Dex versus MPT in Newly Diagnosed Non Transplant Candidates

FIRST Trial: Conclusions

Continuous Rd significantly extended PFS, with an OS benefit vs. MPT PFS:

HR= 0.72 (*P*= 0.00006) Consistent benefit across most subgroups Rd better than Rd18 (HR= 0.70, *P*= 0.00001) 3 yr PFS: 42% Rd vs. 23% Rd18 and MPT

Planned interim OS: HR= 0.78 (*P*= 0.0168)

Rd was superior to MPT across all other efficacy secondary endpoints

Safety profile with continuous Rd was manageable

Hematological and non-hematological AEs were as expected for Rd and MPT

Incidence of hematological SPM was lower with continuous Rd vs. MPT

In NDMM transplant-ineligible patients, the FIRST Trial establishes continuous Rd as a new standard of care

Benhoubker et al, N Engl J Med 2014; 271: 906-17.

National Comprehensive NCCN Cancer Network*

NCCN Guidelines Version 3.2016 **Multiple Myeloma**

MYELOMA THERAPY

Exposure to myelotoxic agents (including alkylating agents and nitrosoureas) should be limited to avoid compromising stem-cell reserve prior to stem-cell harvest in patients who may be candidates for transplants. Therapy for Previously Treated Multiple Myeloma **Preferred Regimens:** Repeat primary induction therapy (if relapse at
 • Dexamethasone/thalidomide/cisplatin/ >6 mo) doxorubicin/cyclo-phosphamide/etoposide (DT- Bortezomib (category 1) PACE) ± bortezomib (VTD-PACE) Bortezomib/dexamethasone Elotuzumab/lenalidomide/dexamethasone · Bortezomib/cyclophosphamide/dexamethasone (category 1) · Bortezomib/lenalidomide/dexamethasone Ixazomib • Bortezomib/liposomal doxorubicin (category 1) • Ixazomib/dexamethasone Bortezomib/thalidomide/dexamethasone Ixazomib/lenalidomide/dexamethasone Carfilzomib (category 1) · Carfilzomib/dexamethasone · High-dose cyclophosphamide Carfilzomib/lenalidomide/dexamethasone Lenalidomide/dexamethasone (category 1) Panobinostat/bortezomib/

dexamethasone(category 1)

Thalidomide/dexamethasone

Pomalidomide/dexamethasone(category 1)

MYEL-D

ion of NCCN[®].

- (category 1) Cyclophosphamide/lenalidomide/ dexamethasone
- Daratumumab
- Dexamethasone/cyclophosphamide/etoposide/ cisplatin (DCEP)
- work, inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written pr sion of the NCCN Guidelines, go online to NCCN.org. © 2016 National Comprehensive Cancer Ne To view the most recent and complete ve

- POM was effective in heavily pretreated patients who had already received LEN and bortezomib and who progressed on their last line of therapy
- The combination of POM with LoDEX improves the ORR due to synergy between immunomodulatory agents and glucocorticoids
 POM + LoDEX, 34%; POM alone, 15%
- Response was durable with POM regardless of the addition of LoDEX
 - POM + LoDEX, 8.3 months ; POM alone, 8.8 months
- POM is generally well tolerated, with low rates of discontinuations due to AEs
 - · Age had no impact on ORR, DoR, or safety

Richardson et al Blood 2014; 123: 1826-32

Characteristic	KRd (n=396)	Rd (n=396)
Presence of neuropathy at baseline, %	36.4	34.6
Number of prior regimens, median (range)	2 (1–3)	2 (1–3)
Prior therapies, %		
Transplant	54.8	57.8
Bortezomib	65.9	65.7
Non-responsive to prior bortezomib*	15.2	14.6
Lenalidomide	19.9	19.7
Any IMiD	58.8	57.8
Refractory to prior IMiD in any prior regimen	21.5	22.2
Bortezomib and IMiD	36.9	35.1
Non-responsive to prior bortezomib* and refractory to prior IMiD	6.1	6.8

ASPIRE: Carfilzomib, Lenalidomide, and Dexamethasone

Stewart et al NEJM 2015; 372:142-52

				=396)		
Risk Group by I FISH	N	Median, months	N	Median, months	HR	P-value (one-sided)
High 4	18	23.1	52	13.9	0.70	0.083
Standard 14	47	29.6	170	19.5	0.66	0.004

Carfilzomib Pomalidomide Low dose Dex Median of 5 prior lines of therapy; 49% of patients had high/intermediate risk cytogenetics at baseline 								
	 ≥ VGPR ORR CBR DOR (median) PFS (median) OS (median) 	27% 70% 83% 17.7 months 9.7 months > 18 months						
FISH/cyto	Response rates, PFS, and OS were preserved independent of FISH/cytogenetic risk status							
		Shah et al ASF	I 2013					

PANORAMA 1: A Randomized, Double-Blind, Phase 3 Study of Panobinostat or Placebo Plus Bortezomib and Dexamethasone in Relapsed or Relapsed and Refractory Multiple Myeloma

Improvement in median PFS of 4 mos w/o difference in ORR or OS

Two-fold increase in nCR/CR rate (28% vs 16%)

Higher rate of Grade 3/4 diarrhea (25.5% vs 8%), fatigue (23.0% vs 11.9%), thrombocytopenia (67.4% vs 31.4%), and leucopenia (34.5% vs 11.4%), discontinuation due to AE (33.6% vs 17.3%).

Confirms PAN-BTZ-Dex in BTZ-refractory pts (PANORAMA 2): ORR: 34.5%; CBR: 52.7%; median PFS: 5.4 mos; median OS: 17.5 mos

FDA approved for relapsed refractory MM exposed to bortezomib and IMiD

Need for less toxic more selective HDACi that can be given with PI to exploit synergistic cytotoxicity. San Miguel J, et al. Lancet Oncol. 2014

Ricolinostat (ACY 1215) Selective Histone Deacetylase 6 Inhibitor

Synthesized and validated at DFCI

Angel investor company has advanced to phase II-III clinical trials-LLS TAP Program

Well tolerated daily oral medication

Achieves 50% responses when combined with either bortezomib, lenalidomide or pomalidomide in relapsed refractory myeloma

		Placebo-Rd (N=362)	p-value
Confirmed ORR (≥PR)	78.3	71.5	p=0.035
CR+VGPR	48.1	39.0	p=0.014
Response categories			
CR	11.7	6.6	p=0.019
PR	66.7	64.9	-
VGPR	36.4	32.3	-
Median time to response, mos*	1.1	1.9	_
Median duration of response, mos	20.5	15.0	-

	Progression-free survival		
Parameter	E-Ld	Ld	Relative difference (%)
Median PFS (months)	19.4	14.9	
1-year PFS (%)	68	57	19
2-year PFS (%)	41	28	52
3-year PFS (%)	26	18	44
Primary analysis Hazard ratio (95% CI)	0.70 (0.57, 0.85) p=0.0004		
3-year follow-up Hazard ratio (95% CI)	0.73 (0.6	50, 0.89)	

N (%)	Total N = 17	Len Refractory* N = 9
Overall Response Rate	13 (76)	5 (56)
Very Good Partial Response	4 (24)	2 (22)
Partial Response	9 (53)	3 (33)
Disease Control Rate [†]	15 (88)	7 (78)
Stable Disease	3 (18)	3 (33)
Progressive Disease	1 (6)	1 (11)

*3 patients double refractory and 1 triple refractory (Len/Bor +Pom) †Disease Control Rate = CR +VGPR + PR + SD >12 weeks. Data cutoff date: September 22, 2015

San Miguel et al ASH 2015

Immune Effects of HDACi 241 in MM Therapy

Augments PD-L1 expression on MM cells

Augments MM cell line cytotoxicity, which is enhanced with pomalidomide, CD38Ab, and/or PD-1/PD-L1 Abs

Augments and autologous MM cell cytotoxicity, which is enhanced by CD38 Ab and/or PD-1/PD-L1 Abs

Enhances MM cytotoxicity alone and with PD-1/PD-L1Abs, even in the presence of pDCs

Augments NK cell function, alone and with PD-L1 Ab

Summary and Conclusions

- Broader population of patients now eligible for therapy: 60% BM plasma cells; kappa:lambda>100; bone disease on MRI or PET/CT
- In newly diagnosed transplant candidates, three drug regimens incorporating immunomodulatory drugs and proteasome inhibitors before and after transplant prolong PFS and OS.
- MRD portends for better patient outcome and is a goal of therapy

Summary and Conclusions

- Relapse therapies now include bortezomib, lenalidomide/dex, bortezomib/pegylated doxorubicin, pomalidomide/dex, carfilzomib, bortezomib/panobinostat, elotuzumab len dex, daratumumab, and ixazomib.
- Novel targeted and immune therapies are showing great promise.
- Incorporation of novel therapies at all stages of disease is further improving patient outcome in MM

