Updates on Diagnostic Criteria and Management of Multiple Myeloma

Kenneth C. Anderson, MD
Dana-Farber Cancer Institute

Integration of Novel Therapy Into Myeloma Management

Bortezomib, lenalidomide, thalidomide, bortezomib/doxorubicin, carfilzomib, pomalidomide, panobinostat, daratumumab, ixazomib, elotuzumab

Target MM in the BM microenvironment to overcome conventional drug resistance in vitro and in vivo

Effective in relapsed/refractory, relapsed, induction, consolidation, and maintenance therapy

16 FDA approvals (7 in 2015!) and median patient survival prolonged 3-4 fold

New approaches needed to treat and ultimately prevent relapse
Criteria for Diagnosis of Multiple Myeloma (MM)

MGUS
- M spike <3 g
- PC <10%

Smoldering MM
- M spike ≥3 g
- OR ≥10% PC

Active MM
- ≥10% PC
- M spike +

AND

- No anemia, bone lesions, normal calcium and kidney function

Diagnosis of Active MM In Asymptomatic Patients (IMWG)

Even without CRAB Features, the following define active MM:
- Bone marrow plasmacytosis > 60% ¹

- Abnormal FLC ratio > 100 (involved kappa) or <0.01 (involved lambda) ²

- Focal bone marrow lesions detected by functional imaging including PET-CT and/or MRI ³, ⁴

2. Larsen et al Leukemia 2013; 27: 941
4. Hillengass et al Leuk Lymph 2013

Copyright 2016©, National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
Vaccines Targeting MM Specific Peptides in Smoldering Multiple Myeloma

Goal is to prevent evolution of smoldering to active myeloma

- Cocktails of immunogenic HLA-A2-specific XBP1, CD138, CS1 peptides to induce MM-specific and HLA-restricted CTL responses

Clinical trials (LLS TAP Program):
Immune responses to vaccine in all patients including tetramer positive cells and type I cytokines

Lenalidomide with vaccine augments these immune response

Lenalidomide and PDL-1, HDAC 6i 241 with vaccine to induce memory Immune response against myeloma

Bae et al., Leukemia 2011; 25:1610-9.
Bae et al., Clin Can Res 2012; 17:4850-60.
Bae et al., Leukemia 2015
Effects of HDACi 241 on MM Specific Cytotoxic T cells (MM CTLs)

- Does not affect viability of CD3, CD4, CD8 T cells
- Does not induce checkpoint inhibitors on MM CTLs
- Increases costimulatory molecules, proliferation, Th-1 cytokine production, and cytotoxicity of MM CTLs
- Increases central and effector memory MM CTL cytotoxicity, costimulatory molecules, and proliferation
- Decreases regulatory T cells

International Staging System (ISS) for Myeloma

<table>
<thead>
<tr>
<th>Stage</th>
<th>Criteria</th>
<th>Median Survival (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>β2m < 3.5 mg/L, albumin > 3.5 g/dL</td>
<td>62</td>
</tr>
<tr>
<td>II*</td>
<td>Not stage I or III</td>
<td>44</td>
</tr>
<tr>
<td>III</td>
<td>β2m > 5.5 mg/L</td>
<td>29</td>
</tr>
</tbody>
</table>

*β2m < 3.5 mg/L and albumin < 3.5 g/dL or β2m 3.5 - < 5.5 mg/dL, any albumin

Revised ISS (R-ISS) incorporates LDH and high risk FISH abnormalities

Palumbo et al J Clin Oncol 2015; 33: 2863-9
Chromosomes and Prognosis in Multiple Myeloma

For conventional low and high dose therapy:

Nonhyperdiploid worse prognosis than hyperdiploid

- t(11;14), hyperdiploidy -standard risk
- t(4;14), t(14;16), t(14;20), del(17p), del(13q14) - high risk

For novel treatments

Bortezomib, but not lenalidomide, can at least partially overcome t(4;14), del(13q14) - del(17p) p53 remains high risk

Increasing Stringency in Defining Complete Response

- CR Negative Immunofixation & < 5% PC in BM

- Stringent CR Normal FLC & no clonal PC by immunohistochemistry (Low sensitivity <10^-2)

- Outside BM Imaging techniques (MRI & CT-PET).

- BM Level Immunophenotypic remission (by multiparametric flow)
 Molecular remission (by sequencing)

* Pitfalls: 1. Pattern of BM infiltration in MM is not uniform... The possibility of residual MM-PC in another territory cannot be excluded (false negative results).
2. Extramedullary relapses.
DEFINITION OF MULTIPLE MYELOMA

Active (Symptomatic) Myeloma2,3

Clonal bone marrow plasma cells ≥10% or biopsy-proven bony or extramedullary plasmacytoma
And

Any one or more of the following myeloma defining events:
• Calcium >0.25 mmol/L (>1 mg/dL) higher than the upper limit of normal or >2.75 mmol/L (>11 mg/dL)
• Renal insufficiency (creatinine >2 mg/dL [>177 μmol/L] or creatinine clearance <40 mL/min
• Anemia (hemoglobin <10 g/dL or hemoglobin >2 g/dL below the lower limit of normal)
• One or more osteolytic bone lesions on skeletal radiography, CT, or PET-CT
• Clonal bone marrow plasma cells ≥60%
• Abnormal serum FLC ratio ≥100 (involved kappa) or <0.01 (involved lambda)
• >1 focal lesions on MRI studies >5mm

© 2016 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written permission of NCCN®.
To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.
Combinations in the Upfront Treatment of MM

Stewart AK, Richardson PG, San Miguel JF Blood 2009

RVd versus Rd for Newly Diagnosed MM

Durie et al, ASH 2015
Bortezomib, lenalidomide and dexamethasone versus Lenalidomide and dexamethasone: Progression Free Survival

Log-rank P value = 0.0018 (one sided)*
HR = 0.712 (0.560, 0.906)*

Durie et al, ASH 2015

Bortezomib, lenalidomide and dexamethasone versus Lenalidomide and dexamethasone: Overall Survival

Log-rank P value = 0.0250 (two sided)*
HR = 0.709 (0.516, 0.973)*

Durie et al, ASH 2015
Phase III Maintenance Studies – Transplant Eligible Patients

<table>
<thead>
<tr>
<th>Trial</th>
<th>N</th>
<th>Regimen</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFM 2005-02</td>
<td>614</td>
<td>Maintenance lenalidomide vs placebo following first or second ASCT</td>
<td>4-yr PFS: 60% vs 33%</td>
</tr>
<tr>
<td>CALGB 100104</td>
<td>460</td>
<td>Maintenance lenalidomide vs placebo after ASCT</td>
<td>Median TTP: 46 vs 27 mos</td>
</tr>
<tr>
<td>RV-MM-PI-209</td>
<td>402</td>
<td>MPR + maintenance lenalidomide vs MPR vs MEL200 + maintenance lenalidomide vs MEL200</td>
<td>Median PFS (R vs no R): 37 vs 26 mos 5-Yr OS (R vs no R): 75 vs 58 mos</td>
</tr>
<tr>
<td>HOVON-65</td>
<td>827</td>
<td>VAD vs PAD followed by HD melphalan and ASCT, then thalidomide or bortezomib as maintenance</td>
<td>Median PFS: 28 vs 35 mos CR/nCR: 15% vs 31%</td>
</tr>
<tr>
<td>Nordic MSG 15</td>
<td>370</td>
<td>Bortezomib x 21 wks vs no maintenance</td>
<td>≥ nCR: 45% vs 35%</td>
</tr>
</tbody>
</table>

ASCT and Maintenance Improve Outcome

<table>
<thead>
<tr>
<th></th>
<th>ASCT</th>
<th>noASCT</th>
<th>p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS, median</td>
<td>59 mos</td>
<td>42 mos</td>
<td>0.01</td>
</tr>
</tbody>
</table>

ISS I / II STANDARD FISH

<table>
<thead>
<tr>
<th></th>
<th>ASCT</th>
<th>noASCT</th>
<th>p.</th>
<th>ASCT</th>
<th>noASCT</th>
<th>p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS, median</td>
<td>60 mos</td>
<td>44 mos</td>
<td>0.05</td>
<td>69 mos</td>
<td>49 mos</td>
<td>0.04</td>
</tr>
<tr>
<td>5-year OS</td>
<td>85%</td>
<td>72%</td>
<td>0.03</td>
<td>84%</td>
<td>72%</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Maintenance No maintenance

<table>
<thead>
<tr>
<th></th>
<th>ASCT</th>
<th>noASCT</th>
<th>p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS, median</td>
<td>62 mos</td>
<td>41 mos</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>noASCT</th>
<th></th>
<th>p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS, median</td>
<td>53 mos</td>
<td>21 mos</td>
<td>0.01</td>
</tr>
<tr>
<td>5-year OS</td>
<td>77%</td>
<td>60%</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Cerrato et al, ASH 2015

IFM/DFCI 2009 Study (US and France)

Newly Diagnosed MM (N=1,360)

- **RVD x 3**
- **RVD x 2**
- **Lenalidomide**
- **Cy (3g/m2)**
- **Mobilization Goal: 5 x 10⁶ cells/kg**

Induction

Consolidation

<table>
<thead>
<tr>
<th></th>
<th>Randomize</th>
<th>Calibration</th>
<th>Induction</th>
<th>Collection</th>
<th>MRD</th>
<th>Consolidation</th>
<th>Maintenance</th>
<th>MRD</th>
<th>SCT at relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVD x 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cy (3g/m2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal: 5 x 10⁶ cells/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVD x 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenalidomide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Richardson et al, ASH 2014

*IFM vs. US: 1yr vs. Continuous
IFM 2009: Best Response

<table>
<thead>
<tr>
<th></th>
<th>RVD arm N=350</th>
<th>Transplant arm N=350</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>49%</td>
<td>59%</td>
<td></td>
</tr>
<tr>
<td>VGPR</td>
<td>29%</td>
<td>29%</td>
<td>0.02</td>
</tr>
<tr>
<td>PR</td>
<td>20%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td><PR</td>
<td>2%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>At least VGPR</td>
<td>78%</td>
<td>88%</td>
<td>0.001</td>
</tr>
<tr>
<td>Neg MRD by FCM</td>
<td>228 (65%)</td>
<td>280 (80%)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Attal et al, ASH 2015

![Graph showing PFS (Progression-Free Survival) comparison between HDT and no HDT groups.](image)

N at risk
- HDT: 350, 309, 261, 153, 27
- no HDT: 350, 296, 228, 128, 24

P<0.001

Attal et al, ASH 2015
Sequencing Distinguishes Outcome in FDM Negative Patients

Avet-Loiseau et al, ASH 2015

Phase 1/2 Study of Carfilzomib, Lenalidomide, and Dexamethasone (CRd)

Sequencing Distinguishes Outcome in FDM Negative Patients

Avet-Loiseau et al, ASH 2015

Phase 1/2 Study of Carfilzomib, Lenalidomide, and Dexamethasone (CRd)

ISS Stage	Cytogenetics	Carfilzomib Dosage
	Normal or Favorable (n=33)	Unfavorable (n=16)
I (n=20)	97	100
II/III (n=29)	91	100
Unfavorable (n=16)	61	75

- Generally well tolerated and manageable side effects
- Grade 3/4 adverse events in ≥10% of pts
 - Hematologic: anemia, neutropenia, thrombocytopenia
 - Non-hematologic: hyperglycemia, dyspnea/CHF, HTN, deep vein thrombosis/ pulmonary embolism, renal dysfunction

Best Response to Ixazomib Len Dex and Ixazomib maintenance

![Graph showing response rates to Ixazomib Len Dex and Ixazomib maintenance.]

10 (48%) pts improved their response during maintenance:
- 2 VGPR to nCR, 5 VGPR to CR, 1 VGPR to sCR, and 2 CR to sCR

Kumar et al ASH 2014

Lenalidomide Bortezomib Dexamethasone Panobinostat

- The combination of lenalidomide 25 mg, subcutaneous bortezomib 1.3 mg/m², dexamethasone, and panobinostat 10 mg in newly diagnosed myeloma

≥ ORR 94%
≥ VGPR 67%
CR/nCR 46%
MRD negative 54% (n=26)

- No effect of panobinostat on stem cell collection/mobilization or quality of graft.
- Randomized phase II study of RVD +/- panobinostat planned

Shah et al, ASH 2015
VTD with or without daratumumab in transplant eligible NDMM – IFM2015/HOVON131

Induction 4 cycles
VTD + Dara
VTD

Consolidation 2 cycles
VTD + Dara
HDM ASCT

Maintenance 2 yrs
Dara
Observation

Endpoints:
- sCR
- PFS, OS

Molecular profiling of MM

Stratify by dara treatment, response, MRD status

MRD by flow & NGS

Erasmus MC

VTD + R HDM ASCT

MM/DC Vaccination following Autologous PBSCT for Myeloma

Ongoing CTN randomized trial of lenalidomide with or without vaccine posttransplant Avigan et al
Bone marrow mononuclear cells

\[ACY241 (0.5 \mu M) \]
\[\text{PD-L1 Ab (1ug/ml)} \]

\[\text{pt.1, pt.2, pt.3, pt.4, pt.5} \]

% increase specific cytotoxicity

\[\text{ACY} \]
\[\text{PD-L1} \]
\[\text{ACY+ PD-L1} \]

Autologous MM Cytotoxicity is Enhanced by ACY 241 + PD-L1 Ab

Bae et al, 2016

MYELOMA THERAPY

Exposure to myelotoxic agents (including alkylating agents and nitrosoureas) should be limited to avoid compromising stem-cell reserve prior to stem-cell harvest in patients who may be candidates for transplants.

Primary Therapy for Non-Transplant Candidates

(Assess for response after 2 cycles)

Preferred Regimens:
- Bortezomib/dexamethasone
- Bortezomib/cyclophosphamide/dexamethasone
- Bortezomib/lenalidomide/dexamethasone (category 1)
- Lenalidomide/low-dose dexamethasone (category 1)
- Melphalan/prednisone/bortezomib (MPB) (category 1)
- Melphalan/prednisone/lenalidomide (MPL) (category 1)
- Melphalan/prednisone/thalidomide (MPT) (category 1)

Other Regimens:
- Dexamethasone (category 2B)
- Ixazomib/lenalidomide/dexamethasone
- Liposomal doxorubicin/vincristine/dexamethasone (DVD) (category 2B)
- Melphalan/prednisone (MP)
- Thalidomide/dexamethasone (category 2B)
- Vincristine/doxorubicin/dexamethasone (VAD) (category 2B)

MYEL-D
Impact of Novel Agents in the Treatment of Elderly Patients with Newly Diagnosed MM

Substantial improvements in PFS and OS

<table>
<thead>
<tr>
<th></th>
<th>Median PFS (mos)</th>
<th>Median OS (mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP<sup>1</sup>-<sup>8</sup></td>
<td>11–20</td>
<td>29.1–49.4</td>
</tr>
<tr>
<td>MPT<sup>1</sup>-<sup>6</sup></td>
<td>15–27.5</td>
<td>29–51.6</td>
</tr>
<tr>
<td>VMP<sup>7</sup>,<sup>8</sup>,<sup>11</sup></td>
<td>21.7–27.4</td>
<td>68.5% (3-yr OS)*</td>
</tr>
<tr>
<td>MPR-R<sup>3</sup></td>
<td>31</td>
<td>N/A</td>
</tr>
<tr>
<td>VMP-VT/VP<sup>10</sup></td>
<td>34</td>
<td>74% (3-yr OS)*</td>
</tr>
<tr>
<td>VMPVT-VT<sup>11</sup></td>
<td>37.2</td>
<td>85% (3-yr OS)*</td>
</tr>
</tbody>
</table>

*Median OS not reached
N/A: not available

1Palumbo et al. Blood 2008; 112:3107–3114
4Waage et al. Blood 2010; 116:1405-12
10Palumbo et al. ASH 2010 (Abstract 622)
11Palumbo et al. ASH 2010 (Abstract 620)

FIRST Trial: Len/Dex versus MPT in Newly Diagnosed Non Transplant Candidates

<table>
<thead>
<tr>
<th>Arm A</th>
<th>Continuous Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEN + Lo-DEX Continuously</td>
<td>LENALIDOMIDE 25mg D1-21/28 Lo-DEX 40mg D1,8,15 & 22/28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arm B</th>
<th>Rd18</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEN + Lo-DEX: 18 Cycles (72 wks)</td>
<td>LENALIDOMIDE 25mg D1-21/28 Lo-DEX 40mg D1,8,15 & 22/28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arm C</th>
<th>MPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEL + PRED + THAL 12 Cycles (72 wks)</td>
<td>MELPHALAN 0.25mg/kg D1-4/42 PREDNISONE 2mg/kg D1-4/42 THALIDOMIDE 200mg D1-22/28</td>
</tr>
</tbody>
</table>

Pls > 75 yrs: Lo-DEX 20 mg D1, 8, 15 & 22/28; THAL² (100 mg D1-22/28); MEL² 0.2 mg/kg D1-4

• Stratification: age, country and ISS stage

FIRST Trial: Conclusions

Continuous Rd significantly extended PFS, with an OS benefit vs. MPT

PFS:
- HR = 0.72 (P = 0.00006)
- Consistent benefit across most subgroups
- Rd better than Rd18 (HR = 0.70, P = 0.00001)
- 3 yr PFS: 42% Rd vs. 23% Rd18 and MPT
- Planned interim OS: HR = 0.78 (P = 0.0168)
- Rd was superior to MPT across all other efficacy secondary endpoints

Safety profile with continuous Rd was manageable

- Hematological and non-hematological AEs were as expected for Rd and MPT
- Incidence of hematological SPM was lower with continuous Rd vs. MPT

In NDMM transplant-ineligible patients, the FIRST Trial establishes continuous Rd as a new standard of care

When to Consider Retreatment

- Differences between biochemical relapse and symptomatic relapse need to be considered
- Patients with asymptomatic rise in M-protein can be observed to determine the rate of rise and nature of the relapse
 - **Caveat:** patients with known aggressive or high-risk disease should be considered for salvage even in the setting of biochemical relapse
- CRAB criteria are still listed as the indication to treat in the relapsed setting—however, in patients with progression, treatment can avoid CRAB
 - **C**: Calcium elevation (> 11.5 mg/L or ULN)
 - **R**: Renal dysfunction (serum creatinine > 2 mg/dL)
 - **A**: Anemia (Hb < 10 g/dL or 2 g < normal)
 - **B**: Bone disease (lytic lesions or osteoporosis)
MYELOMA THERAPY

Exposure to myelotoxic agents (including alkylating agents and nitrosoureas) should be limited to avoid compromising stem-cell reserve prior to stem-cell harvest in patients who may be candidates for transplants.

Therapy for Previously Treated Multiple Myeloma

Preferred Regimens:

1. Repeat primary induction therapy (if relapse at >6 mo)
2. Bortezomib (category 1)
3. Bortezomib/dexamethasone
4. Bortezomib/cyclophosphamide/dexamethasone
5. Bortezomib/lenalidomide/dexamethasone
6. Bortezomib/ibposomal doxorubicin (category 1)
7. Bortezomib/thalidomide/dexamethasone
8. Carfilzomib
9. Carfilzomib/dexamethasone
10. Carfilzomib/lenalidomide/dexamethasone (category 1)
11. Cyclophosphamide/lenalidomide/dexamethasone
12. Daratumumab
13. Dexamethasone/cyclophosphamide/doxorubicin/cisplatin (DCEP)
14. Dexamethasone/thalidomide/cisplatin/doxorubicin/cyclophosphamide/etoposide (DT-PACE) ± bortezomib (VTD-PACE)
15. Elotuzumab/lenalidomide/dexamethasone (category 1)
16. Ixazomib
17. Ixazomib/dexamethasone
18. Ixazomib/lenalidomide/dexamethasone (category 1)
19. High-dose cyclophosphamide
20. Lenalidomide/dexamethasone (category 1)
21. Panobinostat/bortezomib/dexamethasone (category 1)
22. Pomalidomide/dexamethasone (category 1)
23. Thalidomide/dexamethasone

Other Regimens:

- Bendamustine
- Bortezomib/vorinostat
- Lenalidomide/bendamustine/dexamethasone
- Panobinostat/carfilzomib

Copyright 2016©, National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
Pomalidomide With Low-Dose Dexamethasone Relapsed and Refractory Multiple Myeloma

- POM was effective in heavily pretreated patients who had already received LEN and bortezomib and who progressed on their last line of therapy
- The combination of POM with LoDEX improves the ORR due to synergy between immunomodulatory agents and glucocorticoids
 - POM + LoDEX, 34%; POM alone, 15%
- Response was durable with POM regardless of the addition of LoDEX
 - POM + LoDEX, 8.3 months; POM alone, 8.8 months
- POM is generally well tolerated, with low rates of discontinuations due to AEs
 - Age had no impact on ORR, DoR, or safety

POM + LoDEX significantly improved PFS vs HiDEX

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>POM + LoDEX</th>
<th>HiDEX</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT Population</td>
<td>253/302</td>
<td>138/153</td>
<td>0.49 (0.40-0.61)</td>
</tr>
<tr>
<td>del(17p)/t(4;14)</td>
<td>71/77</td>
<td>32/35</td>
<td>0.44 (0.28-0.68)</td>
</tr>
<tr>
<td>Standard-Risk Cytogenetics</td>
<td>126/148</td>
<td>63/72</td>
<td>0.55 (0.40-0.75)</td>
</tr>
</tbody>
</table>

ASPIRE: Carfilzomib, Lenalidomide, and Dexamethasone (KRd) vs Lenalidomide and Dexamethasone (Rd)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>KRd (n=396)</th>
<th>Rd (n=396)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of neuropathy at baseline, %</td>
<td>36.4</td>
<td>34.6</td>
</tr>
<tr>
<td>Number of prior regimens, median (range)</td>
<td>2 (1–3)</td>
<td>2 (1–3)</td>
</tr>
<tr>
<td>Prior therapies, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transplant</td>
<td>54.8</td>
<td>57.8</td>
</tr>
<tr>
<td>Bortezomib</td>
<td>65.9</td>
<td>65.7</td>
</tr>
<tr>
<td>Non-responsive to prior bortezomib*</td>
<td>15.2</td>
<td>14.6</td>
</tr>
<tr>
<td>Lenalidomide</td>
<td>19.9</td>
<td>19.7</td>
</tr>
<tr>
<td>Any IMiD</td>
<td>58.8</td>
<td>57.8</td>
</tr>
<tr>
<td>Refractory to prior IMiD in any prior regimen</td>
<td>21.5</td>
<td>22.2</td>
</tr>
<tr>
<td>Bortezomib and IMiD</td>
<td>36.9</td>
<td>35.1</td>
</tr>
<tr>
<td>Non-responsive to prior bortezomib* and refractory to prior IMiD</td>
<td>6.1</td>
<td>6.8</td>
</tr>
</tbody>
</table>

PFS by Risk Group

<table>
<thead>
<tr>
<th>Risk Group by FISH</th>
<th>KRd (n=396)</th>
<th>Rd (n=396)</th>
<th>HR (one-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Median, months</td>
<td>N</td>
</tr>
<tr>
<td>High</td>
<td>48</td>
<td>23.1</td>
<td>52</td>
</tr>
<tr>
<td>Standard</td>
<td>147</td>
<td>29.6</td>
<td>170</td>
</tr>
</tbody>
</table>

Primary End Point: Progression-Free Survival
Intent-to-Treat Population (N=929)

- Median follow-up: 11.2 months

Dimopoulos et al, ASCO 2015

Carfilzomib Pomalidomide Low dose Dex

- Median of 5 prior lines of therapy; 49% of patients had high/intermediate risk cytogentic risk status at baseline
 - ≥ VGPR 27%
 - ORR 70%
 - CBR 83%
 - DOR (median) 17.7 months
 - PFS (median) 9.7 months
 - OS (median) > 18 months

- Response rates, PFS, and OS were preserved independent of FISH/cytogenetic risk status
- Well tolerated with no unexpected toxicities

Shah et al ASH 2013
PANORAMA 1: A Randomized, Double-Blind, Phase 3 Study of Panobinostat or Placebo Plus Bortezomib and Dexamethasone in Relapsed or Relapsed and Refractory Multiple Myeloma

- Improvement in median PFS of 4 mos w/o difference in ORR or OS
 - Two-fold increase in nCR/CR rate (28% vs 16%)

- Higher rate of Grade 3/4 diarrhea (25.5% vs 8%), fatigue (23.0% vs 11.9%), thrombocytopenia (67.4% vs 31.4%), and leukopenia (34.5% vs 11.4%), discontinuation due to AE (33.6% vs 17.3%).

- Confirms PAN-BTZ-Dex in BTZ-refractory pts (PANORAMA 2): ORR: 34.5%; CBR: 52.7%; median PFS: 5.4 mos; median OS: 17.5 mos

- FDA approved for relapsed refractory MM exposed to bortezomib and IMiD

- Need for less toxic more selective HDACi that can be given with PI to exploit synergistic cytotoxicity.

 San Miguel J, et al. Lancet Oncol. 2014

Ricolinostat (ACY 1215) Selective Histone Deacetylase 6 Inhibitor

- Synthesized and validated at DFCI

- Angel investor company has advanced to phase II-III clinical trials-LLS TAP Program

- Well tolerated daily oral medication

- Achieves 50% responses when combined with either bortezomib, lenalidomide or pomalidomide in relapsed refractory myeloma
Phase 3 study of weekly oral ixazomib plus lenalidomide-dex: final PFS analysis

- 35% improvement in PFS with IRd vs Rd (data cut-off 30 October 2014)

A subsequent exploratory analysis of PFS was conducted (median follow-up 23.3 and 22.9 months in the IRd and Rd arms); median PFS 20 vs 15.9 months

Response rates and TTP improved and responses durable with IRd

<table>
<thead>
<tr>
<th>Response rates, %</th>
<th>IRd (N=360)</th>
<th>Placebo-Rd (N=362)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed ORR (≥PR)</td>
<td>78.3</td>
<td>71.5</td>
<td>p=0.035</td>
</tr>
<tr>
<td>CR+VGPR</td>
<td>48.1</td>
<td>39.0</td>
<td>p=0.014</td>
</tr>
</tbody>
</table>

Response categories

<table>
<thead>
<tr>
<th>CR</th>
<th>IRd (N=360)</th>
<th>Placebo-Rd (N=362)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>66.7</td>
<td>64.9</td>
<td>–</td>
</tr>
<tr>
<td>VGPR</td>
<td>36.4</td>
<td>32.3</td>
<td>–</td>
</tr>
</tbody>
</table>

Median time to response, mos* | IRd 1.1 | Placebo-Rd 1.9 | – |

Median duration of response, mos | IRd 20.5 | Placebo-Rd 15.0 | – |

- Significant improvements in different response categories
 - Conservative assessment of best response – derived up until the end of treatment
 - Independently determined by IRC assessment of blinded central laboratory data, rigorously following IMWG 2011 criteria

- PFS benefit confirmed by time to progression (TTP) analysis: median 21.4 months versus 15.7 months with IRd versus Rd, HR 0.712; p=0.007

Moreau et al ASH 2015
Monoclonal Antibody Based Therapeutic Targeting of Multiple Myeloma

Antibody-dependent Complement-dependent Cellular Cytotoxicity (ADCC) vs. CDC

Antibody-dependent Cytotoxicity (ADCC)
- Effector cells: NK cell, macrophage, neutrophil.
- Lucatumumab or Dacetuzumab (CD40)
- Elotuzumab (SLAMF7)
- Daratumumab (CD38)
- XmAb5592 (HM1.24)
- SAR650984 (CD38)

Complement-dependent Cytotoxicity (CDC)
- Effector cells: C1q
- Daratumumab (CD38)
- SAR650984 (CD38)

Apoptosis/growth arrest via intracellular signaling pathways

Progression-Free Survival

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Progression-free survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS (months)</td>
<td>19.4</td>
</tr>
<tr>
<td>1-year PFS (%)</td>
<td>68</td>
</tr>
<tr>
<td>2-year PFS (%)</td>
<td>41</td>
</tr>
<tr>
<td>3-year PFS (%)</td>
<td>26</td>
</tr>
<tr>
<td>1-year follow-up PFS (%)</td>
<td>57</td>
</tr>
<tr>
<td>2-year follow-up PFS (%)</td>
<td>28</td>
</tr>
<tr>
<td>3-year follow-up PFS (%)</td>
<td>18</td>
</tr>
</tbody>
</table>

Relative difference (%)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>E-Ld</th>
<th>Ld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative difference (%)</td>
<td>19</td>
<td>52</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.70 (0.57, 0.85)</td>
<td></td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.73 (0.60, 0.89)</td>
<td></td>
</tr>
</tbody>
</table>

Dimopoulos et al ASH 2015
Prespecified interim analysis for overall survival indicates a strong trend (p=0.0257) with early separation sustained over time for E-Ld vs Ld.

Dimopoulos et al ASH 2015

Phase 2 Study of Daratumumab (DARA) in Patients with ≥3 Lines of Prior Therapy or Double Refractory Multiple Myeloma: 54767414MMY2002 (Sirius)

- ORR was 29% (95% CI, 21–39) in patients receiving 16 mg/kg DARA
- Stringent complete response (sCR) in 3% of patients (95% CI, 0.6–8.0)
- VGPR or better achieved in 12% (95% CI, 7–20) of patients
- Clinical benefit rate (ORR + MR) was 34% (95% CI, 25–44)

Lonial et al ASCO 2015
Overall Response Rate: Daratumumab + Len/Dex

<table>
<thead>
<tr>
<th></th>
<th>N = 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response rate</td>
<td>26 (81)</td>
</tr>
<tr>
<td>95% CI</td>
<td>63.6-92.8</td>
</tr>
</tbody>
</table>

Best response

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCR</td>
<td>8 (25)</td>
<td>11.5-43.4</td>
</tr>
<tr>
<td>CR</td>
<td>9 (28)</td>
<td>2.0-25.0</td>
</tr>
<tr>
<td>VGPR</td>
<td>9 (28)</td>
<td>13.7-46.7</td>
</tr>
<tr>
<td>PR</td>
<td>6 (19)</td>
<td>7.2-36.4</td>
</tr>
</tbody>
</table>

VGPR or better

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCR+CR+VGPR+PR</td>
<td>20 (63)</td>
<td>43.7-78.9</td>
</tr>
</tbody>
</table>

CR or better (sCR+CR)

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCR+CR</td>
<td>11 (34)</td>
<td>18.6-63.2</td>
</tr>
</tbody>
</table>

- ORR = 81%
- Clinical benefit rate (ORR + minimal response) = 88%

Plesner et al ASH 2015

Immune Suppressive Microenvironment in MM

Checkpoint Blockade Induces Effector Cell Mediated MM Cytotoxicity

Effector: Autologous effector cells (CD3T cells, NK cells)
Target: CD138+ MM cells from Rel/Ref MM-BM

* p<0.05

Lenalidomide Enhances Checkpoint Blockade Induced Cytotoxicity Against MM cells

Phase 1 Trial of Pembrolizumab + Lenalidomide and Low Dose Dexamethasone in RRMM

<table>
<thead>
<tr>
<th>N (%)</th>
<th>Total N = 17</th>
<th>Len Refractory* N = 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response Rate</td>
<td>13 (76)</td>
<td>5 (56)</td>
</tr>
<tr>
<td>Very Good Partial Response</td>
<td>4 (24)</td>
<td>2 (22)</td>
</tr>
<tr>
<td>Partial Response</td>
<td>9 (53)</td>
<td>3 (33)</td>
</tr>
<tr>
<td>Disease Control Rate†</td>
<td>15 (88)</td>
<td>7 (78)</td>
</tr>
<tr>
<td>Stable Disease</td>
<td>3 (18)</td>
<td>3 (33)</td>
</tr>
<tr>
<td>Progressive Disease</td>
<td>1 (6)</td>
<td>1 (11)</td>
</tr>
</tbody>
</table>

*3 patients double refractory and 1 triple refractory (Len/Bor +Pom)
†Disease Control Rate = CR + VGPR + PR + SD >12 weeks.
Data cutoff date: September 22, 2015

San Miguel et al ASH 2015

Immune Effects of HDACi 241 in MM Therapy

Augments PD-L1 expression on MM cells

Augments MM cell line cytotoxicity, which is enhanced with pomalidomide, CD38Ab, and/or PD-1/PD-L1 Abs

Augments and autologous MM cell cytotoxicity, which is enhanced by CD38 Ab and/or PD-1/PD-L1 Abs

Enhances MM cytotoxicity alone and with PD-1/PD-L1Abs, even in the presence of pDCs

Augments NK cell function, alone and with PD-L1 Ab
Myeloma CAR therapy

- Multiple promising targets:
 - CD19, CD138, CD38, CD56, kappa, Lewis Y, CD44v6, CS1, BCMA

- Functional CAR T cells can be generated from MM patients

- CAR T and NK cells have in vitro and in vivo activity against MM

- Clinical trials underway
 - Anecdotal prolonged responses but no robust efficacy data available yet

- Many questions remain about CAR design:
 - optimal co-stimulatory domains
 - optimal vector
 - optimal dose and schedule
 - need for chemotherapy
 - Perhaps ‘cocktails’ of multiple CARs or CARs + chemotherapy will be required for best outcomes

Stadtmauer et al, 2015

MM Patient #1: Response to CD19 CAR Therapy

sCR, MRD neg
Now d +307
TTP after ASCT #1 d190
Remission inversion

Garfall et al, NEJM 2015; 373: 1040-7
Summary and Conclusions

• Broader population of patients now eligible for therapy: 60% BM plasma cells; kappa:lambda>100; bone disease on MRI or PET/CT

• In newly diagnosed transplant candidates, three drug regimens incorporating immunomodulatory drugs and proteasome inhibitors before and after transplant prolong PFS and OS.

• MRD portends for better patient outcome and is a goal of therapy

Summary and Conclusions

• Relapse therapies now include bortezomib, lenalidomide/dex, bortezomib/pegylated doxorubicin, pomalidomide/dex, carfilzomib, bortezomib/panobinostat, elotuzumab len dex, daratumumab, and ixazomib.

• Novel targeted and immune therapies are showing great promise.

• Incorporation of novel therapies at all stages of disease is further improving patient outcome in MM