B-Cell Lymphomas: Optimizing Treatment with Small Molecule Inhibitors

Jeffrey Jones, MD, MPH
The Ohio State University Comprehensive
Cancer Center – James Cancer Hospital
and Solove Research Institute

Barbara Pro, MD Robert H. Lurie Comprehensive Cancer Center of Northwestern University

NCCN.org - For Clinicians | NCCN.org/patients - For Patients

Jeffrey Jones, MD, MPH

The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute

early in treatment Typically mild,	Arthralgias Usually mild RESONATE: Grade 1/2: 17%	Atrial Fibrillation 6 to 9% of patients Increased risk in	Bleeding Fatal bleeding events have
early in treatment Typically mild,	RESONATE:	·	
self-limiting, and responsive to antidiarrheal agents RESONATE: Grade 1/2: 48%		patients with cardiac risk factors, acute infection, or history of atrial fibrillation RESONATE: 10 cases (ibrutinib) v. 1 case (ofat)	occurred Any grade, including bruising and petechiae: ~50% of patients Grade ≥3: 6% patients HOLD drug for 3-7 days pre-/post-surgery depending on bleeding risk of procedure CAUTION with concomitant anticoagulants

Idelalisib Important Toxicities Diarrhea: **Transaminase elevations: Pneumonitis:** occurs in 2 forms generally reversible must be distinguished from pneumonia Self-limiting: Usually occurs within first Any patient who presents usually mild; early onset 12 wkś with pulmonary symptoms should be (median 1.5 months); responds to common 74% of patients with evaluated for pneumonitis antidiarrheal agents treatment interruption able Hold idelalisib with any to resume idelalisib at a Severe diarrhea: lower dose without symptomatic pneumonitis late onset (median 7 recurrence months) responds Often treated with poorly to antimotility Permanently discontinue corticosteroids in addition to continuing antibiotics agents but appears to idelalisib if ÁLT/AST > 20 x be responsive to UIN and holding idelalisib if no improvement budesonide and/or systemic corticosteroids Coutre SE, et al. Leuk Lymphoma. 2015;56:2779-2786.

Venetoclax Monotherapy: Phase II trial in R/R CLL with del(17p) Patients received venetoclax monotherapy once daily with dose rampup (20-400 mg over 5 wks) with TLS prophylaxis (N = 107) Tx-Emergent AE,* % Grade 3/4 Any Grade Outcome (N = 107)96 76 Any 79.4 Overall response, % Neutropenia 43 40 ■ CR or CRi 7.5 Diarrhea 29 0 ■ nPR 2.8 ■ PR 69.2 Nausea 29 1 Pts with MRD- test, % 40 Anemia 27 18 Time to first response, Fatigue 22 0 0.8 (0.1-8.1) mos (range) Pyrexia 20 Time to CR/CRi, 8.2 (3.0-16.3) Thrombocytopenia 19 15 mos (range) Hyperphosphatemia 16 1 1-yr PFS, % (95% CI) 72 (61.8-79.8) Vomiting 15 1 1-yr OS, % (95% CI) 86.7 (78.6-91.9) Infection 72 20 Stilgenbauer S, et al. ASH 2015. Abstract LBA-6.

Venetoclax + Rituximab in R/R CLL: Responses by Subgroup Fludarabine-**IGVH** All del17p refractory unmutated Best Response, n (%) (N = 49)(n = 9)(n = 9)(n = 19)Overall Response 41 (84) 7 (78) 5 (56) 16 (84) CR/CRi 20 (41) 3 (33) 4 (44) 7 (37) PR/nodular PR 21 (43) 4 (44) 1 (11) 9 (47) 5 (10) 1 (11) 2 (22) 1 (5) Disease progression 2 (4) 0 1 (11) 1 (5) Death (TLS) a 1 (2) 1 (11) 1 (11) 1 (5) ^a Fatal TLS event previously reported; no other fatal TLS events occurred after May 2013 protocol amendment As of 2015-01-21, 38 patients remain on study 11 discontinued (6 due to PD; 3 withdrew consent; 2 due to AE) Roberts AW, et al. EHA 2015. Abstract S431.

Summary Points

- Small molecule inhibitors of B-cell receptor signaling are highly effective for the treatment of relapsed CLL
 - Category 1 evidence supports their first choice for all relapsed CLL
 - Advantages of combination therapy yet to be clearly characterized
 - Patients and treating physicians should be aware of unique response characteristics and toxicities before beginning therapy
- Emerging evidence suggests alternate tyrosine kinase inhibitors can be effective after failure of first-choice
 - Venetoclax (pending FDA approval) also active in this group
- Ibrutinib now approved as first-line therapy for CLL
 - First choice for patients with del(17p) or TP53 mutated CLL
 - Category 1 recommendation for frail patients, patients ≥70 years, and patients <70 years with significant comorbidities
 - Chemoimmunotherapy remains standard of care for fit patients <70 years
 - Ongoing trials will better clarify role v. cytotoxic chemotherapy

Optimizing Treatment with Small Molecule Inhibitors

Mantle Cell Lymphoma

Barbara Pro, MD Robert H Lurie Cancer Center Northwestern University

Disclosures:

The faculty listed below have the following relevant financial relationships to disclose:

Barbara Pro, MD

Celgene Corporation: Consulting Fees; Honoraria

Takeda: Honoraria

Mantle Cell Lymphoma

- A distinct and uncommon subtype of NHL
- t (11;14)(q13;q32) chromosomal translocation
 - Overexpression of cyclin D1
- MCL is derived from CD5-positive cells within the mantle zone
- Median age: 68
- High response rate to initial treatment but inevitable relapses
- Response to salvage treatments poor

Yatabe Y et al. Blood 2000;95:2253-2261; Cheah CY et al J Clin Oncol. 2016 Apr 10;34(11):1256-69

Strategies in the Treatment of MCL

- When to treat
 - Stratify
 - "Indolent subtype"
 - Mantle Cell Lymphoma International Prognostic Index (MIPI)
- What to treat with

Relapsed/Refractory Disease

- Use of chemoimmunotherapy regimens produce ORR 58%-93%
- Median PFS < 2 years
- Consolidation with allogeneic stem cell transplant results in best outcome in transplant eligible patients
- Four agents have received regulatory approval:
 - Bortezomib
 - Lenalidomide
 - Temsirolimus
 - Ibrutinib

mTOR inhibitors (mTORi) in Relapsed Mantle Cell Lymphoma					
	n	ORR	CR	mDOR	
Temsirolimus	54	22	5	7.1	
Everolimus (Wang)	58	8.6	0	1.6-13.2	
Everolimus (Renner)	35	20	6	5.5	
Hess G et al. J Clin Oncol. 2009;27:3822-3829. Wang M Br J Haematol 2014;165:510-518.					
Renner C et al. Haematologic	a 2012;97:108	5-1091.			

Patient Characteristics (n=111)

Characteristics		
Age, y	Median [range]	68 [40 – 84]
Gender, n (%)	Male	85 (77)
ECOG	0-1	99 (89)
Simplified MIPI, n (%)	Low-risk	15 (14)
	Intermediate risk	42 (38)
	High risk	54 (49)
Number of prior therapies	Median [range]	3 [1 - 5]
Refractory disease, n (%)		50 (45)
Advanced disease, n (%)		80 (72)
At least one node ≥ 5 cm		43 (39)

Wang ML et al. N Engl J Med 369:507-516, 2013

Objective Responses

Responses	All	
	n (%), n = 111	
Overall response	75 (68)	
Complete response	23 (21)	
Partial response	52 (47)	
Stable disease/PD	35 (32)	
Response duration-mo	13.9	
Median	6 (8)	

- · Common adverse events: diarrhea, fatigue, and nausea
- · Hematologic toxicity was uncommon

Wang ML et al. N Engl J Med 369:507-516, 2013

Lenalidomide in Relapsed Mantle Cell Lymphoma

	n	ORR	CR	mDOR
Trneny	170	40	5	16.1
Zinzani	56	35	12	16.3
Goy	134	28	7.5	16.6

Trneny M . et al, ASH 2014, Abstr # 626. Zinzani PL, et al. Ann Oncol 24: 2892-2897, 2013. Goy A et al. J Clin Oncol 31:3688-3695

Idelalisib: Phase I Relapsed/Refractory MCL

50-350 mg/daily

Primary outcome: safety and DLT

Patients without DLT and progression after 48 weeks enrolled in the expansion

Efficacy Outcome N=40	All patients	< 150 mg BID	> 150 mg BID
ORR	16 (40)	5(21)	11 (69)
CR	2 (5)	0	2 (12.5)
PR	14 (35)	5 (21)	9 (56.3)
SD	19 (47.5)	15 (62.5)	4 (25)
PD	4 (10)	4 (16.7)	0
Median PFS (all)	3.7		
Median DOR	2.7		

Kahl B et al, Blood 2014;123:3398-3405

Idelalisib: Phase I Relapsed/Refractory MCL

AEs >10%	All AEs	Grade ≥3 AEs
Diarrhea	16 (40)	7 (17.5)
Nausea	13 (32.5)	2 (5)
Pyrexia	11 (27.5)	0
Fatigue	10 (25)	1 (2.5)
Rash	9 (22.5)	1 (2.5)
Decreased appetite	8 (20)	6 (15)
Upper respiratory infection	8 (20)	0
Asthenia	7 (17.5)	0
Constipation	6 (15)	0
Headache	6 (15)	0
Cough	5 (12.5)	0
Pneumonia	5 (12.5)	4 (10)
Vomiting	5 (12.5)	0
Weight loss	5 (12.5)	0
Laboratory abnormality		
ALT/AST elevation*	24 (60)	8 (20)
Neutropenia	12 (30)	4 (10)
Anemia	9 (22.5)	1 (2.5)
Thrombocytopenia	8 (20)	2 (5)

Kahl B et al, Blood 2014;123:3398-3405.

Other Agents

CDK4/6 inhibitors

• Palbociclib¹

- 17 patients
- ORR: 18 % (1CR, 2PR)
- Five patients with PFS > 1 year
- Abemaciclib²
- 22 patients ORR: 35% (5 PR)

BCL-2 inhibitors

- Venetoclax³
- 28 patients
- ORR: 75% (CR 21%, PR 54%)
- Median PFS: 14 months

- 1. Leonard JP et al. Blood. 2012;119:4597-6073;
- 2. Morschhauser F et al. ASH 2014; Abstrat 3067
- 3. Gerecitano JF et al. ASH 2015; Abstract 254.

Conclusions

- The heterogeneous biology and clinical course of MCLs represents a major challenge to define standard therapies
- The increasing understanding of the pathogenetic mechanisms is leading to a more precise diagnosis and the identification of attractive and promising targets
- The increasing numbers of effective agents in the relapse setting is likely to translate in more effective "targeted" frontline therapy

