NCCN 10th Annual Congress: Hematologic Malignancies[™]

Management of HIV-associated Non-Hodgkin's Lymphomas

Lawrence D. Kaplan, MD UCSF Helen Diller Family Comprehensive Cancer Center

NCCN NCCN NCCN Network®

NCCN.org

HIV-Associated Lymphoma: Background

- Most HIV-associated lymphomas are diffuse large B-cell (65%) or Burkitt (25%) ie aggressive CD20+ B-cell lymphomas
- Other Lymphoproliferative diseases:
 - Plasmablastic lymphomas (EBV)
 - Primary effusion lymphomas (HHV-8, EBV)
 - Hodgkin Lymphoma (EBV)
 - Multicentric Castleman Disease (HHV-8)
- Seen across a broad range of CD4 counts
- Incidence of NHL in a large database of patients on effective ART(CNICS) was 171 cases/100,000 PY (Achenbach et al. Clin Infect Dis, 2014)
- In non-HIV infected population is 10-20 cases/100,000 PY

- 41yo HIV-seropositive male presents with a 3 week history of enlarging L neck mass. Drenching night sweats began 5 days prior to clinic visit.
- On exam there is a 7cm L neck mass
- Core needle biopsy demonstrates a CD20+, CD 10-, large B-cell lymphoma which is bcl-6+, MUM-1+. FISH: bcl2-, myc-.
- PET-CT shows disease in neck, mediastinum, retroperitoneum and BM.
- HIV-1 RNA undetectable. CD4: 185
- Patient is receiving ART with zidovudine/lamivudine and lopinavir/ritonavir.

ARS Question

You should now...

- 1. Continue current ART regimen, begin R-CHOP chemotherapy
- 2. Change ART regimen to raltegravir, emtricitabine/tenofovir start, DA-EPOCH-R
- 3. Hold ART, start R-CHOP
- 4. Change ART regimen to raltegravir, emtricitabine/tenofovir, start CHOP without rituximab

Improvement in Treatment Outcome for HIV-Associated NHL

- Pre-cART (Combination Antiretroviral Therapy):
 - Standard Chemotherapy for DLBCL CR 50%, 2 yr OS <20%
- cART era:
 - CHOP/R-CHOP CR: 50-77% ^{1,2}
 - Infusional Chemotherapy (DA-EPOCH-R): CR: 73%. 2yr PFS 66%, OS 70%³
 - High-dose chemotherapy with PBSC support
 - Outcome strongly dependent

On CD4

- 1. Kaplan L et al Blood 2005; 106: 1538
- 2. Boue F et al JCO 2006; 24: 4123
- 3. Sparano J et al Blood 2010; 115: 3008

Chemotherapy for HIV-Associated NHL in the cART Era

Chemo	Ν	CR%	Med Survival	<u>OS</u>
CHOP	50	47	27 mo	NS
R-CHOP	99	58	35 mo	NS
CHOP/ACVBP	35	54	22 mo	54% @ 1yr
R-CDE	74	70	>23 mo	64% @ 2yr
CHOP (liposomal)	24	75	>16 mo	58% @ 1yr
CDE (ECOG)	55	44	14 mo	44% @ 2yr
CDE	46	50	26 mo	61% @ 2yr
EPOCH (NCI)	39	74		60% @ 4yr
CHOP	24	55	NR	55% @ 2yr

Brower et al, 2003 (modified)

HIV-Associated NHL Treatment Approaches

- Use of monoclonal antibodies (rituximab)
- Infusional chemotherapy (DA-EPOCH, CDE)
- High-dose chemotherapy with AHCT
- Use of antiretroviral therapy

Role of Rituximab: AMC 010

HIV-NHL Stratify: stage I/II vs III/IV

Randomize

Stage I, II receive 3 cycles Chemoimmunotherapy and IFRT

Kaplan, L. D. et al. Blood 2005;106:1538-1543

CHOP, n=51

CTX 750mg/m² d1 Doxorubicin 50mg/m² d1 VCR 1.4mg/m² d1 Prednisone 100mg qd d1-5

R-CHOP, n=99

Rituximab 375mg/m² d-2 And monthly x3 after CR

G-CSF d 4-11 all patients PJP Prophylaxis required cART required Leptomeningeal prophylaxis

AMC 010: Response Summary

Parameter	<u>R-CHOP</u>		CHO	
	n	%	n	%
CR	49	49	21	42
CRu	8	8	3	6
Total CR	57	57	24	48
OI	8 in	6 patients	0	0
Infectious death	15	15	1	2*
NHL Death	14	14	15	29
*~ ~~-				
*p=.027				

AMC 010: Progression-Free (A) and Overall Survival (B,C) CHOP vs R-CHOP

AMC 010: Infectious Deaths

Category	N (%)
All Infectious deaths	16
Culture-positive sepsis	8
Sepsis syndromes	6
Other	2
CD4+ cells <50/mm ³	60%
Death in cycle 1 or 2	53%
ANC <u><</u> 1000	60%
R-CHOP group:	
If CD4 <50 (n=22)	8 (36%)
If CD4 <u>></u> 50 (n-77)	5 (6%)*
* p=.001	

Phase II Trial of CHOP Plus Rituximab in Patients With HIV-Associated Non-Hodgkin's Lymphoma

Dose-Adjusted EPOCH-R (A	AMC)	
--------------------------	------	--

Drug	Dose	Duration	Dose Adjustment
Rituximab	375 mg/m ²	4-6 hours Day 1	
Etoposide	50 mg/m²/day	Days 1-4	None
Vincristine	0.4 mg/m²/day	Days 1-4	None
Doxorubicin	10 mg/m²/day	Days 1-4	None
Prednisone	60 mg/m²/day	Days 1-5	
Cyclophosphamide CD4 count < 100 CD4 count <u>></u> 100	Cycle 1: 187 mg/m ² 375 mg/m ² Cycle 2-6: Escalate dose	Day 5	187mg/m ² increments up to 750mg/m ²

Response to EPOCH Without Antivirals

	Ν	%CR Re	elapse	%PFS	%OS	
CD4<100	9	56%	1	75%	16%	
CD4 <u>></u> 100	20	87%	1	90%	87%	
Total (39)	29	74%	2	73%	60%	
Median Follow-up: 53 mos						
Median CD4+:		198 cells	s/mm ³			
Stage III/IV:		64%				

Little et al, Blood 2003;101(12):4653-9.

AMC 034: Randomized phase II trial of EPOCH with concurrent vs delayed rituximab

Group	Concurrent	Sequential			
Eligible Patients	48	53			
CD4 (median/mm	²) 181	194			
AA-IPI 2-3 (%)	69	64			
CR/CRu	35 (73%)*	29(55%)			
Not assessable	4 (8%)	4 (7%)			
Infectious Death	2	3			
*null hypothesis (CR/CRu 50% vs alternative 75%) rejected					
	Sparano, et al Blood.2010;115:300				

PFS and OS Short Course-EPOCH-RR

Treatment factors affecting outcomes in HIV-associated Non-Hodgkin's Lymphoma

- Pooled individual patient data for 1546 patients
- 19 prospective clinical trials
- Included DLBCL and BL / BLL(about 25%)
- Influence of treatment-specific factors on outcomes
 - Type of chemotherapy
 - Rituximab
 - Concurrent cART

Barta S et al. Blood. 2013;122:3251

OS for patients treated with rituximab-containing regimens vs non-rituximab-containing regimens

Kaplan-Meier plots comparing OS for patients with DLBCL treated with EPOCH vs CHOP and R-EPOCH vs R-CHOP

Pooled Multivariate Analysis

- DLBCL : Overall Survival with EPOCH better than with CHOP R-EPOCH / R-CDE better OS than R-CHOP
- Rituximab use associated with improved OS
- In BL more intensive regimens (c/w infusional) better PFS.
- Concurrent cART associated with higher CR rate (p=.005) and trend towards improved OS (p=.07)
- CD4 count <50/mm² associated with higher risk of TRM (37% vs 6%)

Barta S et al. Blood. 2013;122:3251

Phase II Burkitt Lymphoma Trials

	Mead ¹	LaCasce ²	Thomas ³	Wang ^₄	Sparano	Dunleavy*	Noy ⁵
Ν	42	14	28	14	16/11	19	34
Regimen	CODOX -M/IVAC	CODOX- M/IVAC	R-hyper CVAD	CODOX -M/IVAC	R-EPOCH	R-EPOCH	RCODOX -M/IVAC
Hi Risk	42	11	NA	11	NA/NA	NA	32
CR (%)	NA	86	86	63	63/82	100	NA
EFS%(y)	54 (2)	64 (2)	80 (3)+	60 (2)	NA/NA	100	69 (1)
OS%(y)	62 (2)	71 (2)	89 (3)	NA	NA/NA		69 (2)

+In multivariate analysis including historical controls not receiving rituximab age and rituximab significant

1. Mead GM, et al. Blood 2008

2. LaCasce A Leuk Lymphoma. 2004;45:761

3. Thomas DA, et al Cancer 2006; 106: 1569

4. Wang ES,et al Cancer 2003; 98: 1196

5. Noy A et al. Blood 2015; 126: 160–166

*HIV+ and -

Autologous HCT in Patients with HIV-Associated Lymphomas

Reference	Failed to Mobilize (n)	Patients Transplanted (n)	TRM	Median Follow-up (months)	Overall Survival (%)
Krishnan ¹	0	20	5%	31.8	85
Spitzer ²	2	20	5%	5.8	Median EFS: 23 weeks
Re ³	6	27	0%	44	74.6
Serrano⁴	0	11	0%	32	73
EBMT ⁵	NA	68	7.50%	32	61
BMT-CTN-08036	NA	40	5.1%	12	86.6

1. Krishnan A et al. Blood. 2005;105(2):874-8

2. Spitzer TR et al. Biol Blood Marrow Transplant. 2008;14(1):59-66.

3. Re A et al. Blood. 2009;114(7):1306-13.

4. Serrano D et al. Exp Hematol. 2005;33(4):487-94.

5. Balsalobre P et al. J Clin Oncol. 2009;27(13):2192-8.

6. Alvarnas J et al. 2014 ASH Annual Meeting. Abstract 674.

Autologous HCT Studies: Infectious Complications

	AMC	Re	Serrano	Krish	Gabarre
Infection	Ν	Ν	Ν	Ν	Ν
Bacteremia*	4	2	6	4	
C. Difficile	3	1	2		
HSV	1				
CMV	4			3	2
Enterococcus (UTI)	1				
Aspergillus pneumonia			1	1	
Legionella			1		
PCP				2	
VZV				2	

*s viridans, s epidermitis (3), e coli, s. hominis, fusobacterium, proteus

Should Antiretroviral Therapy be administered with Chemotherapy?

- Benefit: Better control of HIV replication. More rapid recovery post-chemo.
- Risk: Chemotherapy-induced toxicities may be greater (neuropathy, mucositis, myelosuppression)
- Interactions with ancillary agents: eg anitbiotics, antifungals
- Experience with conventional dose chemotherapy is favorable even with protease inhibitor (PI)-based ART

Protease inhibitors may potentiate chemotherapy-induced neutropenia

- Protease inhibitors inhibit CYP3A4 and are substrates and inhibitors of Pgp.
- Modest delay in clearance of cyclophosphamide without increased toxicity in AMC trial with R-CHOP¹.
- With vinblastine in ABVD: cytopenias and neuropathy
- Patients in a prospective cohort study treated with infusional CDE and protease inhibitor sparing ART compared with PIbased ART had²:
 - higher median d10 ANC
 - Fewer admissions for febrile-neutropenia
 - No response or survival differences.
- No excessive toxicity with R-EPOCH in AMC 034

1. Ratner et al. J Clin Oncol. 2001:19;2171

2. Bower et al . Blood. 2004 ; 104(9):2943-6.

Antiretroviral Therapy Recommendations

- Avoid using zidovudine with chemotherapy
- Be aware that ritonavir has numerous drug interactions (as do other PIs)
- Integrase inhibitor (raltegravir) based regimens safest (especially with HD chemotherapy/ASCT)
- Communication between Oncologist and HIV-treating physician critical!
- If necessary, cART can be interrupted or held until completion of chemotherapy
- Use of antineoplastic agents in cancer patients with HIV/AIDS. Rudek M, et al The Lancet Oncology. 2011;12:905-912.

Conclusions and Recommendations

- Most patients with HIV-associated NHL can be treated as you would HIV-uninfected patients
- Infusional regimens may be more active. R-EPOCH standard for most
- Rituximab should be included with front-line chemotherapy in most cases
- High-dose chemotherapy with ASCT can be safely and successfully used for relapsed HIV-associated lymphomas
- cART can be continued in most patients but can be interrupted if necessary. Integrase inhibitor – based regimens best
- Standard antibiotic prophylaxis as used in HIV- patients. Include PJP prophylaxis, MAC prophylaxis if CD4<100
- Regular CMV screening suggested after autologous transplant

