NCCN 10th Annual Congress: Hematologic Malignancies™

Patient Case Studies & Panel Discussion

Myeloproliferative Disorders, Elderly Myelofibrosis, Hemophagocytic Syndromes

Panelists: Jessica Altman, MD, Robert H. Lurie Comprehensive Cancer Center of Northwestern University; Joseph C. Alvarnas, MD, City of Hope Comprehensive Cancer Center; Peter L. Greenberg, MD, Stanford Cancer Institute

NCCN.org

CASE 1

Peter L. Greenberg, MD Stanford Cancer Institute

Challenges in Myeloproliferative Neoplasms (MPNs)

- Phenotypic mimicry/less common MPNs: diagnostic issues
- Prognostic risk status: Survival, thrombosis
- Therapy & role of JAK2 mutation inhibitors
- Impact of MPN-associated molecular markers on clinical outcome and phenotypes

Case 1

- A 68yo man presents with headaches & visual disturbances. Past history includes an unprovoked lower extremity DVT treated without recurrence & a bleeding duodenal ulcer 2 years ago which is no longer symptomatic. He lacks pulmonary or constitutional symptoms.
- Physical exam shows mild hypertension, negative fundoscopic exam. Spleen tip palpable 3 cm below the left costal margin. No nodes or edema.

Case 1

CBC:

WBC 16K, Hb 16.5, MCV 79, Hct 49, Platelets 600K

Differential: 60 PMNs, 35 lymphs, 5 monocytes

Peripheral smear:

Mixed micro- and normo-cytic RBCs, 2% retics, large and clumped platelets, normal WBC morphology

ARS Question

- 1. Serum creatinine
- 2. Serum erythropoietin
- 3. RBC mass (if available)
- 4. JAK2 mutation analysis
- 5. 2, 3 and 4

1.2: In your differential, which would be your primary diagnostic consideration?

- 1. Essential thrombocythemia (ET)
- 2. Reactive thrombocytosis
- 3. Polycythemia vera (PV)
- 4. Secondary polycythemia
- 5. Myelofibrosis (MF)

0.0%	0.0%	0.0%	0.0%	0.0%
1	2	3	4	5
0	0	0	0	0
Total: 0				

Myeloproliferative Neoplasms

- Classical: PV, ET, MF, CML
- Less common: Chronic neutrophilic leukemia (CNL), mastocytosis, CEoL, MPN-U
- MDS/MPNs
 - CMML, JMML
 - Atypical CML, BCR-Abl1 negative
 - MDS/MPN-U ('Overlap syndrome')
 - RARS-T (provisional)

WHO, 2008

Diagnostic Criteria for PV

- Major criteria
 - Hb >18.5 Male, >16.5 Female or ♠RBC mass
 - JAK2^{V617F} or JAK2 exon 12 mutation
- Minor criteria
 - Marrow panmyelosis
 - ◆Serum epo
 - Endogenous erythroid colony formation

ET: Distinctions from Other MPNs or Secondary Thrombocytoses

- Platelets >450K, nenlarged megakaryocytes,
 JAK2^{617F} mutation or other clonal marker
 - Rule out reactive thrombocytosis, iron deficiency
 - Consider 'masked PV'
 - Hct ≥49M, 48F or Hb ≥16.5 M, 16F if JAK2m+ & iron deficient
 - Absence of peripheral blood/marrow features of MF
 - Absence of dyserythropoietic features of RARS-T
 - BCR-ABL mutation negative

Distinction between ET and Prefibrotic MF

- Prefibrotic MF > ET
 - Anemia, leukocytosis, splenomegaly, megakaryocytic atypia, hypercellularity w/ granulocytic predominance
 - Leukoerythroblastic peripheral smear, tear drop RBCs

Kvasnicka & Thiele, Am J Hematol 85:62, 2010

ARS Question

Prognostic Risk Systems in MPNs

Clinical Features	DIPSS/MF, N=993	IPSET, N=867	PV, N=1545
Anemia	XX		
WBCs	x	X	X
Blasts, PB	x		
Constitutional sx	x		
Age	x	X	X
Karyotype	x		
Platelets <100K/Prior Thrombosis	X	X	x
RBC Transfusion dependence	X		
Subgroup Survival	1.3-3-7-15 yrs	14-25-NR yrs	11-19-27 yrs
	Gangat, JCO 2011	Passamonti, Blood 2012	Tefferi, Leuk 2013

Determinants of Thrombotic Risk in PV, ET, MF

- Age, prior thrombotic history
- Leukocytosis, JAK2 mutation burden
- Platelet, leukocyte, endothelial activation; protein C resistance; inflammation; c-microparticles

Falanga et al, Sem Thrombosis Hemostasis 40:348, 2014

ARS Questions

Ruxolitinib Therapy in Hydroxyurea-Resistant PV patients

- Complete response 59%
- Phlebotomy independence 60%
- **Ψ**PV-related symptoms

Vannucchi et al, NEJMed 372:426, 2015

ARS Question

Mutations in MPNs

MPNs	MUTATIONS	
Polycythemia Vera	JAK2 ^{V617F} , JAK2exon 12, LNK, (TET2)	
Essential Thrombocythemia	JAK2V ^{617F} , CALRexon9, cMPL ^{W515L/K} , (TET2)	
Primary Myelofibrosis	JAK2 ^{V617F} , CALRexon9, cMPL ^{W515L/K} , (TET2)	
Chronic Myeloid Leukemia	BCR-ABL	
Atypical CML, Chronic Neutrophilic Leukemia	CSF3R (GCSFR), SETBP1	
Myeloid Neoplasm w/ Eosinophilia	PDGFRA, PDGFRB, FGFR1	
Systemic Mastocytosis	KIT ^{816V}	
Refractory Anemia w/ Ring Sideroblasts & Thrombocytosis	SRFB1, JAK2 ^{V617F}	

Clinical Outcomes in MPNs

	Survival, years	AML transformation
Polycythemia Vera	14 (11-19-27)	10% @ 20 yr
Essential Thrombocythemia	20 (14-25-NR)	5% @ 20yr
MF	7 (1.3-3-7-15)	5-30%
MF* <i>CALRm</i> (23%)	17.7	9.4% @10yr
JAK2m (65%)	9.2	19.4% @10yr
MPLm (4%)	9.1	16.9% @ 10yr
Triple negative (8%)	3.2	34.4%@10yr

PV: Tefferi et al, Leukemia 27: 1874, 2013, n=1545 ET: Passamonti et al, Blood 120:1197, 2012, n=867

MF: Gangat et al, JCO 29: 392, 2011, n=993

MF*: Rumi et al, Blood 124: 1062, 2014, n= 617

Effects of Mutation Sequence on MPNs

- TET2 mutations occur in ~10% of JAK2m+ pts by analysis of stem/progenitor clonality:
- *TET2* mutation influenced *JAK2*-related gene proliferative & differentiative expression
- 'JAK2m-first' pts → clinical phenotypes:
 PV/ET > MF, PV > ET, ↑thrombosis, younger,
 (in vitro) ruxolitinib responsive

Ortmann et al, NEJMed 372:601, 2015

MPNs: Directions

- Comparative trials with therapeutic agents
- New drugs (eg, imetelstat) and combinations (eg, +Interferon) with JAK2 mutation inhibitors
- Target CALR mutations
- Symptom control approaches

CASE 2

Jessica Altman, MD

Robert H. Lurie Comprehensive Cancer

Center of Northwestern University

Introduction

- Primary myelofibrosis (PMF) known in the past as agnogenic myeloid metaplasia or chronic idiopathic myelofibrosis
- Most patients with anemia, marked splenomegaly, early satiety, and hypercatabolic symptoms including severe fatigue, low grade fever, night sweats, and weight loss
- Portal hypertension might occur and contribute to variceal bleeding or ascites
- Median survival in the population that comprised International Prognostic Scoring System (IPSS) for PMF was 69 months

(Cervantes et al. 2009. Blood 113(13):2895)

Case History

- 71 yo female in 3/08 developed persistent leukocytosis, frequent infection, and weight loss of ~ 5% body weight
- On exam noted to have splenomegaly (4 cm below costal margin)
- Marrow revealed primary myelofibrosis, JAK2 mutation present
- On initial referral to NMH: WBC 29.8 K/uL, hgb 13.1, plt 341
 - Neutrophils 85%, metamyelocytes 2%, nucleated RBCs 3%, lymphocytes 4%, monocytes 2%, basophils 6%

DIPSS

- Age >65 years − 1 point (pt)
- Leukocyte ct >25,000/microL − 1 pt
- ●Hemoglobin <10 g/dL 2 pts
- •Circulating blast cells ≥1% 1 pt
- ●Constitutional symptoms 1 pt

Subjects with 0, 1-2, 3-4, or 5-6 pts were low, int-1, int-2, or high risk, respectively

(Passamonti et al. 2010. Blood. 115(9): 1703)

DIPSS Plus – adds unfavorable karyotype, red cell transfusion need, and thrombocytopenia

(Gangat et al. 2011. JCO. 29(4): 392)

~ 1.5 years later (12/09)

- Progressive symptomatic splenomegaly and pruritus
- Exam now reveals that spleen is 21 cm below costal margin
- What would you offer her now?

Her course

- Enrolled on randomized phase III trial of INCB 18424 vs placebo
- She had resolution of pruritus and noted improvement in weight and spleen decreased in size from 21 to 13.5 cm
- Maintained response until Summer 2012
- Course then complicated by varices and recurrence of symptomatic splenomegaly
- Now what?
 - Clinical trials offered to her but due to hyperbilirubinemia was not eligible

All of the following are true about JAK2 inhibitors except?

- 1. Ruxolitinib is the only agent commercially available and approved
- 2. Patients without a JAK2 mutation do not respond to JAK2 inhibitors
- 3. 28-42% of patients experience >35% spleen reduction with ruxolitinib
- 4. ~ Half of pts will maintain spleen volume reduction for 144 weeks with ruxolitinib
- 5. Anemia and thrombocytopenia occur with some frequency in patients treated with ruxolitinib

Total: 106

Cervantes et al. 2013. Blood. 122(25):4047

Ruxolitinib Follow up

- 3.5 year follow-up analysis of the COMFORT-II data, 42% reduction in risk of death compared with best-available therapy (BAT)
- At 3.5 years, the probability of survival was 54% and 71% in the BAT and ruxolitinib arms
- Ruxolitinib has also been shown to promote weight gain (96% of subjects) and to improve total cholesterol (97% of subjects) presumably via reversal of MF-related cachexia and catabolic pathways

Harrison CN et al. EHA 2014 Mesa RA et al. ASH 2012

Take Home Points

- AlloSCT decreases risk of leukemic transformation; but not appropriate for many patients
- Prognostic scoring systems
- Many agents utilized for palliation
- Ruxolitinib generally reserved for those with debilitating constitutional symptoms or severely symptomatic splenomegaly
- Many other JAK inhibitors and other agents being studied

References

- Passamonti F et al. DIPSS model. Blood 2010
- Cervantes F et al. 3 year results of COMFORT-II. Blood 2013
- Mesa R et al. PERSIST-1 ASCO 2015
- Harrison CN et al. EHA 2014
- Mesa RA et al. ASH 2012
- Geyer HL and Mesa RA Hematology 2014
- MPN Research Foundation
 - http://www.mpnresearchfoundation.org/Support-Groups

CASE 3

Joseph C. Alvarnas, MD

City of Hope Comprehensive Cancer Center

Patient Presentation

- The patient is a 23-year-old man who presented with epistaxis, hyperbilirubinemia, and pancytopenia
- The patient had multiple erythematous skin lesions and hepatosplenomegaly at presentation
- EBV PCR demonstrating 8200 copies/ml rising to 272,000 copies/ml
- Biopsy of skin lesions demonstrated presence of NK/T-cell non-Hodgkin lymphoma (gamma chain rearrangements)
- Marrow biopsies showed evidence of hemophagocytosis

Patient Presentation

ARS Question

All of the following are criteria that are used to diagnose hemophagocytic syndromes EXCEPT:

- 1. Elevated liver enzymes
- 2. Fever ≥38.5°C
- 3. Elevated soluble CD25
- 4. Hypertriglyceridemia
- Elevated IFN
- Elevated PT/PTT

Patient Presentation

- Patient treated with foscarnet, rituximab and then admitted for multi-agent chemotherapy
- The patient achieved a remission and subsequently underwent allogeneic stem cell transplantation
- 8 months post allogeneic transplant, the patient relapsed with progressive renal failure, anemia, cytopenia due to hemophagocytosis
- The patient died from progressive NHL

ARS Question

Which of the following statements is/are true about hemophagocytic syndromes?

- They can be inherited or can occur sporadically in response to infections or other triggers
- 2. Patients should be treated with allogeneic HCT
- 3. There is a high mortality without treatment
- 4. The most common infectious cause is CMV
- 5. 1 and 3
- 6. All of the above

Hemophagocytic Syndromes

- Hemophagocytic lymphohistiocytosis (HLH)
- May occur as a <u>primary</u> disorder or <u>secondary</u> (sporadic forms) to a number of infections and malignancies
- Primary HLH may occur as familial syndromes¹
 - FHLH1, FHLH2, FHLH3, FHLH4, FHLH5
 - · HLH is only manifestation of disorder
 - · Chediak-Higashi
 - Griscelli II
 - Hermansky-Pudlak II
 - X-linked lymphoproliferative disorders
 - X-linked severe combined immunodeficiency
 - X-linked hypogammaglobulinemia
- Most frequently diagnosed in pediatric population
- However, primary HLH may present at any age, from perinatal to 8th decade of life

1. Weitzman. Hematology (ASH Education Book). 2011:178

Triggers for Secondary HLH

Infection

- Epstein-Barr Virus (EBV) most common infectious cause
- Cytomegalovirus (CMV)
- Parvovirus
- Herpes simplex virus (HSV)
- Varicella-zoster virus (VZV)
- Measles virus
- Human herpes virus-8 (HHV-8)
- H1N1 influenza virus
- Avian flu
- SARS
- · HIV infections

Triggers for Secondary HLH

Immunological/Rheumatological Diseases – Macrophage Activation Syndrome (MAS)

- Adult onset Still's disease
- Systemic lupus erythematosus
- Rheumatoid arthritis
- Mixed connective tissue disease
- Sarcoidosis
- Systemic sclerosis
- Ankylosing spondylitis
- Sjogren's syndrome
- Dermatomyositis

Triggers for Secondary HLH

- Kawasaki disease
- Malignancies
 - Lymphoma
 - T/NK lymphomas
 - Anaplastic large cell lymphoma
 - Acute leukemia
 - Acute B-cell lymphoblastic leukemia
 - · Acute myelogenous leukemia
 - Mediastinal germ cell tumors
 - Solid tumors

Signs/Symptoms of HLH

- Fever
- Jaundice
- Bleeding
- Neurological symptoms
 - Seizures
 - Encephalopathy
 - Ataxia

- Diarrhea
- Skin Rash
 - Edema
 - Purpura
 - Petechiae
 - Generalized rash
- Hepatosplenomegaly

Laboratory/Biopsy Findings

- Elevated liver enzymes
 - Hyperbilirubinemia
 - Transaminases
 - Increased GGT
- Hypertriglyceridemia
- Elevated PT/PTT
- Elevated creatinine/renal failure
- Elevated serum ferritin
- Elevated soluble CD25
- Hemophagocytosis on lymph node, liver, bone marrow biopsy

Diagnostic Criteria for HLH^{1,2}

- Detection of HLH-associated genetic lesion <u>OR</u>
- 2. Patient has 5 of the following:
 - Fever ≥ 38.5°C
 - Splenomegaly
 - Cytopenias affecting 2 out of 3 cell lines
 - Hgb < 9 gm/dL
 - Plt < 100,000/microL
 - Absolute neutrophil count < 1000/microL
 - Hypertriglyceridemia (fasting triglycerides >265 mg/dL) and/or hypofibrinogenemia (fibrinogen <150 mg/dL)
 - Hemophagocytosis in bone marrow, spleen, or lymph nodes
 - Low or absent NK cell activity
 - Ferritin > 500 ng/mL
 - Soluble CD25 > 2400 U/mL
- 1. Jordan and Filipovich. BMT. 2008;42:433
- Weitzman. Hematology (ASH Education Book). 2011:178

Prognosis and Treatment of HLH

- HLH represents a state of profound immunological activation
 - Clinical manifestations reflect this state
- Delayed diagnosis worsens prognosis
- Patients often present with fulminant, multiorgan system involvement
- For patients with familial HLH, historical mortality up to 100%¹
- Sole curative treatment for familial HLH is allogeneic transplant (HCT)
 - Allogeneic HCT survival rates > 70%²
 - 100-day post-HCT mortality up to 30%²
- 1. Jodan and Filipovich. BMT. 2008;42:433
- Weitzman. Hematology (ASH Education Book). 2011:178

Prognosis and Treatment of HLH

- Mortality in secondary HLH exceeds 20%
- Treatment in secondary HLH based upon underlying disorder¹
- MAS
 - High-dose corticosteroids
 - Cyclosporin
 - IV gammaglobulin
 - TNF-inhibiting agents
 - IL-1 inhibitors
 - Anti-IL-6 therapy
- EBV-related HLH
 - Rituximab
 - Chemotherapy
- Malignancy-associated HLH
 - Disease-related chemotherapy

1. Weitzman. Hematology (ASH Education Book). 2011:178

Take Home Messages on HLH

- HLH represents a series of primary and secondary disorders with fulminant presentation and multi-organ system involvement
- Diagnosis is based upon identification of specific genetic lesions or constellation of system findings of disease
- Mortality is high in untreated patients
- Delayed diagnosis increases risk of mortality
- Allogeneic HCT may cure patients with primary HLH
- Treatment of secondary HLH is directed toward reducing systemic inflammation and treating underlying disorder

