Management of Advanced Phase Chronic Myelogenous Leukemia

Jerald P. Radich, MD

Fred Hutchinson Cancer Research Center/
Seattle Cancer Care Alliance

NCCN.org - For Clinicians | NCCN.org/patients - For Patients

Therapy of CML in 2016

Frontline

- Imatinib 400 mg daily
- Nilotinib 300 mg twice daily
- Dasatinib 100 mg daily

Second/third line

- Nilotinib, dasatinib, bosutinib, ponatinib
- Omacetaxine
- Allogeneic SCT

Other

- Decitabine, interferon
- Hydroxyurea, cytarabine, combos of TKIs
- Investigational agents, clinical trials

Definition of AP and BC

- AP1
 - 15 29% blasts in blood or marrow (WHO 10 19%)
 - More than 20% basophils in blood
 - Persistent thrombocytopenia unrelated to therapy
 - Unresponsiveness to therapy
- BC²
 - More than 30% blasts in blood or marrow (WHO 20%)
 - Extramedullary blastic infiltrates
 - Varying degrees of fever, anemia, splenomegaly, leukocytosis

1. Talpaz M, et al.. Blood 2002;99:1928-1937. 2. Druker BJ. Chronic Myelogenous Leukemia In: DeVita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology. Vol. 2 (ed 8); 2007:2267-2304.

Additional cytogenetic aberrations (ACA) in advanced phase (AP and BC) CML

- "Major route" aberrations
 - +8 (30%)
 - +der(22)t(9;22) (30%)
 - +19 (10%)
 - i(17)(q10) (20%)
- "Minor route" aberrations
 - Gains of chromosomes 17 and 21
 - Losses of chromosomes Y, 7, 17
 - t(3;21)(q26;q22)

Mitelman F. Leuk Lymphoma. 1993;11 Suppl 1:11-5.

Johnson et al., Acta Haematol 2002; 107: 76 – 94.

Blast crisis

- Progression to blast crisis is still a phenomenon that is only incompletely understood.
- In up to 80% of BC patients, additional chromosomal aberrations are reported.
- In up to 77% mutations are detected.
- In gene expression profiles blast crisis appears as a disease distinct from CML.
- Treatment continues to be mostly unsuccessful unless allo SCT is offered.

EMR Failure: What is at stake? • Risk of transformation >10% • Risk of death >10% • Risk of failing to achieve MR4.5 >90%

Molecular findings in progression

- Mutations / deletions, p53 in ~24% of myeloid BC p16 in ~50% of lymphoid BC RUNX-1, IKZF1 (Ikaros), ASXL1, WT1, TET1, IDH1, NRAS, KRAS, CBL, in ~77% of all BC
- Alteration of gene expression (progression genes)

Calabretta and Perrotti, Blood 2004; 103: 4010 – 4022 Grossmann et al., Leukemia 2011; 25: 557 – 560 Zheng et al., Leukemia 2006; 20: 1028 – 1034.

Treatment of BC in the 80s and 90s

- Acute leukemia type induction therapies
- Various combinations of
 5-azacytidine, etoposide, mitoxantrone,
 carboplatin, ara-C, fludarabine, decitabine etc.
- No benefit, 个 toxicity
- Return to CP ~9%
- No cures in absence of SCT

Hehlmann, CML and IFN, Springer 1988; Sacchi et al., Cancer 1999; 86: 2632 – 2641; Kantarjian et al, Cancer 1988; 62: 672 – 676; Jacoboni et al., JCO 1986; 4: 1079 – 1088

Treatment of BC: resistance is a	pparently n	ot so futile
	Response	Med. Surv.
ChemotherapyAML likeALL likeOthers (Flag-IDA, MEA)	30-50%	6 m.
TKIImatinibSecond generation (Dasatinib)	40-50%	6 m.
Chemo and TKIIM, Ara-c, IDAIM, MEA	~50%	6 m.

How can you treat AP? Nilotinib in AP-CML Response N (%) Hematologic response 38 (59) CHR 15 (23) 8 (13) **NEL RTC** 15 (23) Cytogenetic Major CG response 23 (36) Complete CG response 14 (22)

CHR = complete hematologic response; NEL = no evidence of leukemia; RTC = return to chronic phase.

Kantarjian H et al. ASH 2006. Abstract 2169.

Descriping Advanced Phase	CNAL / Db . ALL
<u>Dasatinib</u> in Advanced Phase	CIVIL/ PII+ ALL
Accelerated Phase CML ¹	Response Rate
Major Hematologic Response (CHR + NEL)	64%
Major Cytogenetic Response	45%
Complete Cytogenetic Response	32%
Myeloid Blast Phase CML ²	
Major Hematologic Response (CHR + NEL)	33%
Major Cytogenetic Response	33%
Complete Cytogenetic Response	26%
Lymphoid Blast Phase CML ²	
Major Hematologic Response (CHR + NEL)	35%
Major Cytogenetic Response	52%
Complete Cytogenetic Response	46%
Ph+ ALL ²	
Major Hematologic Response (CHR + NEL)	41%
Major Cytogenetic Response	56%
Complete Cytogenetic Response	54%
rley JF et al. J Clin Oncol 2009; 27: 3472- 3479; 2. Cortes J et al. Leukemia 2008;22:2176	-2183.

Dasatinib in BC (3 studies, 400 patients, 119 with Lymphoid BC)

• HR 33% – 61%

(LBC 36% – 80%)

• CR (major) 35% – 56%

• Survival at 1 year 40% – 50%

at 2 years 20% – 30%

Median survival
 8 – 11 months

Talpaz et al., NEJM 2006; Cortes et al., Leukemia 2008; Gambacorti et al., ASH 2007; Saglio et al., Cancer 2010; 116: 3852 – 3861

Treatment of BC by BCR-ABL TKI					
Drug	Reference	Patients	CR	Surv	ival
Diug	Reference	Patients	MBC / LBC	12 months	Median, months
Imatinib					
300 – 600 mg	Druker et al., 2001	58 (20 LBC)	12%	NA	NA
400 – 600 mg	Sawyers et al., 2002	229 (MBC only)	16%	30%	6.9
300 – 1000 mg	Kantarjian et al., 2002	75 (10 LBC)	16%	22%	6.5
600 mg	Sureda et al., 2003	30	13%	36%	10
600 mg	Palandri et al., 2008	92 (20 LBC)	17%	29%	7
Dasatinib					
50 – 100 mg bid	Talpaz et al., 2006	33 (10 LBC)	52% / 90%	~22% ^a	~6
70 – 100 mg bid	Cortes et al., 2008	157 (48 LBC)	35% / 56% b	49% / 30%	11.8 (5.3)
70 bid vs. 140 mg qd	Saglio et al., 2010	210 (61 LBC)	25 – 28% / 40 – 50%	34 – 39% / 39 – 46%	8 (10)
Nilotinib					
up to 1200 mg	Kantarjian et al., 2006	33 (9 LBC)	18%	NA	NA
400 – 600 mg bid	Giles et al., 2012	136 (31 LBC)	40%	42%	10
LBC: lymphoid blast crisis: MB	3C: myeloid blast crisis; HR: her	natologic remission. i	ncludes complete HR. re	turn to CP and no eviden	uce of leukemia:

at 18 months; a only complete and major cytogenetic response listed. Updated from Hehlmann and Saußele., Haematologica. 2008; 93 (12): 1765–1769.

	TKI in blast	crisis
ТКІ	Studies / Patients	Median Survival
Imatinib ^{1–1}	5 / 484 pts, 50 with LBC	6.5 – 10 months
Dasatinib ⁶	⁸ 3 / 400 pts, 119 with LBC	8 – 11 months
Nilotinib ⁹	⁰ 2 / 169 pts, 40 with LBC	10 (LBC 7.9) months
	et al., 2002; ³ Kantarjian et al., 2002; ⁴ Sureda et al., . al., 2008; ⁸ Saglio et al., 2010; ⁹ Kantarjian et al., 200	

Investigational approaches		
Mode of action	Agent(s)	
PP2A activation	Fingolimod (FTY720)	
	SET antagonist OP449	
	CIP2A inhibitor	
Self renewal of LSC	BCL6 + TK inhibitors	
	HIF1α inhibitor	
	IL1 RAP antibodies	
	Smoothened inhibitors (in combination with TKI)	
	Jak2 inhibitor (in combination with TKI)	
Activation of apoptosis	BCL2-inhibitor ABT-737	
	Triptolide	
	Dual-kinase inhibitor ON044580	
	MEK inhibitor PD184352 + farnesyltransferase inhibitor BMS-214662	
Others	Peg-IFN, HDAC inhibitor, Hsp90 inhibitors	

HCT in BC

- Successful in only a minority of patients,
- Mostly after return to CP
- 10 year survival ~16 25%, but
- Best chance of a cure in BC
- Most long term BC survivors have received transplant in 2nd CP

Saußele et al., Blood 2010; 115: 1880 – 1885

What's in a name? STI571

- Then: "Stop transplantation now!"
- Now: "Some transplants indicated."

NCCN and ELN recommendations for allogeneic HCT in CML

Baseline: Never

Second-line: "Always" in blast phase irrespective of the

response to TKIs

"Always" in accelerated phase, if the response to TKI is less than optimal

Third-line: "Always" if the response to second-line TKI

is less than optimal

• The value and the meaning of "Always" depend on transplant risk (age, comorbidities, performance status, donor, etc.).

Summary-progression in the TKI era

- Incidence of BC greatly decreased with TKI!
- Survival in BC not clearly improved with TKI since 1970s
- No recommendation of a specific drug treatment possible
- Transplantation carries the best long term prognosis in BC
- Allogeneic HCT recommended in BC by NCCN and ELN

