Does Generic Imatinib Change the Treatment Approach in CML?

Jerald P. Radich, MD

Fred Hutchinson Cancer Research Center/
Seattle Cancer Care Alliance
Educational Objectives

• Describe the current standard of care and the impact of generic imatinib for the management of newly diagnosed patients with CML.

• Identify the challenges associated with the selection of appropriate first-line TKI therapy for the management of patients with CML.
Survival in Early CP-CML

The University of Texas MD Anderson Cancer Center Database.

Year	Total	Dead
Imatinib | 302 | 15
(censored: non-CML deaths)
Imatinib | 302 | 31
1990-2000 | 963 | 425
1982-1989 | 364 | 273
1975-1981 | 132 | 129
1965-1974 | 123 | 123

Start of the TKI era
Interferon
Busulfan, Hydroxyurea

The University of Texas MD Anderson Cancer Center Database.
Relative Survival with TKI by Response to Rx

- 483 pts with CML Rx with imatinib 400mg (n=71), imatinib 800 mg (n=201), dasatinib (n=111) or nilotinib (n=101)
- 5-yr relative survival 94.8% [92.1 - 97.4]

Prevention of blast crisis
Cumulative Incidences 1983 – 2013

--- BU (n = 188, 115 events, recruitment 1983 – 1990)
--- HU (n = 308, 182 events, recruitment 1983 – 1990)
--- IFN mono (n = 134, 67 events, recruitment 1986 – 1990)
--- IFN + HU (n = 226, 92 events, recruitment 1991 – 1995)
--- IFN + HU, study III (n = 621, 145 events, recruitment 1995 – 2001)
--- IFN + HU, study IIIA (n = 669, 82 events, recruitment 1997 – 2002)
--- Imatinib (n = 1340, 48 events, recruitment since 2002)

German CML Study group, unpublished
OS After Progression to AP/BC in the ENESTnd and IRIS Trials

Progression during TKI therapy is not good

Therapy of CML in 2016

• Frontline
 – Imatinib 400 mg daily
 – Nilotinib 300 mg twice daily
 – Dasatinib 100 mg daily

• Second/third line
 – Nilotinib, Dasatinib, Bosutinib, Ponatinib
 – Omacetaxine
 – Allogeneic SCT

• Other
 – Decitabine, Interferon
 – Hydroxyurea, Cytarabine, combination of TKIs
 – Investigational agents, Clinical trials
How to decide on a TKI

- Treatment goals
 - Lengthen survival?
 - Prevent progression?
 - Complete molecular response/discontinuation?

- Co-morbidities (anticipated drug toxicity)

- Compliance (frequency of dose, restrictions)
Treatment goals in CML

Response goals
- Early molecular response
- CCyR
- Major molecular response
- Deep/complete MR

Why?
- Progression and survival
- Progression and survival
- “Safe haven”
- Discontinuation?
Somewhat bogus comparison of TKIs across randomized trials

<table>
<thead>
<tr>
<th>Outcome, %</th>
<th>Dasatinib<sup>1</sup></th>
<th>Nilotinib<sup>2</sup></th>
<th>IM 400<sup>1,2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Discontinued</td>
<td>39</td>
<td>40</td>
<td>37/50</td>
</tr>
<tr>
<td>12-month CCyR</td>
<td>77</td>
<td>80</td>
<td>66/65</td>
</tr>
<tr>
<td>5-year MMR</td>
<td>76</td>
<td>77</td>
<td>64/60</td>
</tr>
<tr>
<td>5-year MR<sup>4.5</sup></td>
<td>42</td>
<td>54</td>
<td>33/31</td>
</tr>
<tr>
<td>3-month <10%</td>
<td>84</td>
<td>91</td>
<td>64/67</td>
</tr>
<tr>
<td>5-year AP/BC</td>
<td>5</td>
<td>4</td>
<td>7/8</td>
</tr>
<tr>
<td>5-year OS</td>
<td>91</td>
<td>94</td>
<td>90/92</td>
</tr>
<tr>
<td>5-year PFS</td>
<td>85</td>
<td>92</td>
<td>86/91</td>
</tr>
</tbody>
</table>

The Intergroup trials

<table>
<thead>
<tr>
<th>Outcome</th>
<th>DAS¹</th>
<th>IM 400</th>
<th>IM 800²</th>
<th>IM 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCyR</td>
<td>84</td>
<td>69</td>
<td>85</td>
<td>67</td>
</tr>
<tr>
<td>MMR</td>
<td>59</td>
<td>44</td>
<td>53</td>
<td>35</td>
</tr>
<tr>
<td>MR4.5</td>
<td>21</td>
<td>15</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>PFS</td>
<td>93</td>
<td>90</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>OS</td>
<td>97</td>
<td>97</td>
<td>95</td>
<td>90</td>
</tr>
</tbody>
</table>

Survival Based on 3 Months of Molecular Response

Survival After Imatinib Therapy by Molecular Response Achieved at 3 Months

Probability of survival

Time from onset of imatinib therapy (years)

BCR-ABL/ABL < 9.8% OS = 93.3%

BCR-ABL/ABL > 9.8% OS = 57%
Importance of Testing at 3 Months

% Survival / TFS by Early Molecular Response

<table>
<thead>
<tr>
<th>Study</th>
<th>QPCR <10%</th>
<th>QPCR >10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marin (8 year)</td>
<td>93</td>
<td>57</td>
</tr>
<tr>
<td>MD Anderson (10 year)</td>
<td>98</td>
<td>94</td>
</tr>
<tr>
<td>ENEST-nd</td>
<td>97</td>
<td>87</td>
</tr>
<tr>
<td>DASISION</td>
<td>97</td>
<td>86</td>
</tr>
<tr>
<td>BELA</td>
<td>98</td>
<td>88</td>
</tr>
</tbody>
</table>

TFS = transformation-free survival

Outcome by Response at 3m and 6m

- 528 patients treated with imatinib
- 89/483 (18%) had $BCR-ABL >10\%$ at 3 months

<table>
<thead>
<tr>
<th>Response</th>
<th>No.</th>
<th>3 month</th>
<th>6 month</th>
<th>Survival</th>
<th>PFS</th>
<th>FFS</th>
<th>MMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq 10%$</td>
<td><1</td>
<td>342</td>
<td>97</td>
<td>97</td>
<td>87</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>$\leq 10%$</td>
<td>1-10</td>
<td>42</td>
<td>100</td>
<td>97</td>
<td>79</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>$\leq 10%$</td>
<td>>10</td>
<td>10</td>
<td>89</td>
<td>90</td>
<td>51</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>$>10%$</td>
<td><1</td>
<td>18</td>
<td>100</td>
<td>100</td>
<td>76</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>$>10%$</td>
<td>1-10</td>
<td>36</td>
<td>100</td>
<td>94</td>
<td>79</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>$>10%$</td>
<td>>10</td>
<td>35</td>
<td>74</td>
<td>69</td>
<td>11</td>
<td>3.3</td>
<td></td>
</tr>
</tbody>
</table>

Treatment Options Based on Adverse Event Spectrum of TKIs in CML

Ponatinib
- Pancreatic enzymes ↑,
- hypertension, skin toxicity,
 - *thrombotic events*

Nilotinib
- Pancreatic enzyme ↑,
- indirect hyperbilirubinemia,
- hyperglycemia
- QT prolongation,
- cardiovascular events

Imatinib
- Edema/fluid retention,
- myalgia, hypophosphatemia ↑,
- GI effects (diarrhea, nausea)

Bosutinib
- Diarrhea, nausea,
- emesis, rash

Dasatinib
- Pleural/pericardial effusions,
- bleeding risk,
- pulmonary arterial hypertension

ENESTnd-CV Events

Figure 14.3.1-1.2 (Page 1 of 5)
Kaplan-Meier estimate of time to first cardiovascular event
Safety population
All CVEs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Pat</th>
<th>Evt</th>
<th>Cen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Imatinib 400 mg qd:</td>
<td>280</td>
<td>10</td>
<td>270</td>
</tr>
<tr>
<td>(2) Nilotinib 300 mg bid:</td>
<td>279</td>
<td>36</td>
<td>243</td>
</tr>
<tr>
<td>(3) Nilotinib 400 mg bid:</td>
<td>277</td>
<td>51</td>
<td>226</td>
</tr>
</tbody>
</table>

Censored observations

At-risk: Events
(1) 280: 0 227: 2 196: 2 173: 4 159: 5 141: 6 125: 8 67: 10 0: 10
(2) 279: 0 240: 4 208: 10 191: 17 177: 20 158: 23 139: 28 71: 36 0: 36
(3) 277: 0 232: 10 209: 17 196: 22 185: 26 161: 39 145: 42 70: 49 0: 51

Hochhaus AE et al. Leukemia 2016;30:1044-1054

Copyright 2016©, National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
Arteriothrombotic Events With TKI

<table>
<thead>
<tr>
<th></th>
<th>Imatinib (%)</th>
<th>Other TKI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENESTnd</td>
<td>3</td>
<td>10-16</td>
</tr>
<tr>
<td>DASISION</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>BELA*</td>
<td>1 (8)</td>
<td>1 (11)</td>
</tr>
<tr>
<td>EPIC</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>PACE* (Ponatinib)</td>
<td></td>
<td>13 (27)</td>
</tr>
<tr>
<td>Bosutinib, phase 2 Trial</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

* Exposure adjusted. Actual rate in parenthesis

Compliance to Imatinib

(Adagio Study)

<table>
<thead>
<tr>
<th>Actual Imatinib Taken (assessed by pill count)</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>As prescribed</td>
<td>23</td>
<td>14.2</td>
</tr>
<tr>
<td>>the prescribed dose</td>
<td>24</td>
<td>14.8</td>
</tr>
<tr>
<td><prescribed dose</td>
<td>115</td>
<td>71.0</td>
</tr>
</tbody>
</table>

NCCN recommends evaluating compliance whenever a milestone is not achieved.

"A pill a day keeps the CML at bay"

"Not actual size."

Forehead, Dr. Timothy Hughes
Take these and call me in the morning
Adherence and Molecular Response

Adherence >90%, n=64
Adherence ≤90%, n=23

MMR
CMR

P < 0.0001
P < 0.002

Statistical model of CML response

First slope (α)

Second slope (β)

Roeder et al, Blood 2013;121:378-384

Statistical regression results for 51 IRIS trial patients
Results from mathematical model for IRIS trial and CML IV trial

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to complete eradication of MRD</td>
<td>48.9 y (28-112)/32.8 y (18-176)</td>
</tr>
<tr>
<td>Treatment time to 4.0 log reduction (MR^{4.0})</td>
<td>6.5 y (5.0-9.7)/5.3 y (4.5-9.2)</td>
</tr>
<tr>
<td>Treatment time to 4.5 log reduction (MR^{4.5})</td>
<td>10.7 y (7.7-13)/9.1 y (6.9-13)</td>
</tr>
<tr>
<td>Cumulative cure rate after 15 y of treatment</td>
<td>14%/16%</td>
</tr>
<tr>
<td>Cumulative cure rate after 30 y of treatment</td>
<td>31%/42%</td>
</tr>
</tbody>
</table>

Molecular relapse free survival

200 interim patients – overtime, loss MMR=89

Relapses within 6 months, n=77

At 6 months: 63 % (95% CI: 55% - 69%)
At 12 months: 56 % (95% CI: 49 % - 63 %)
At 18 months: 55 % (95% CI: 47 % - 61 %)

TKI Discontinuation trials in CML--Update

<table>
<thead>
<tr>
<th>Study</th>
<th>TKI</th>
<th>No. Patients</th>
<th>% off TKI (at X year)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIM 1</td>
<td>IM</td>
<td>100</td>
<td>38 (5)</td>
<td></td>
</tr>
<tr>
<td>STIM 2</td>
<td>IM</td>
<td>220</td>
<td>51 (2)</td>
<td></td>
</tr>
<tr>
<td>ASTIM</td>
<td>IM</td>
<td>-</td>
<td>61 (3)</td>
<td>Rx for loss of MR 3</td>
</tr>
<tr>
<td>STIK 2/DADI</td>
<td>NIL or DAS</td>
<td>52/63</td>
<td>48-50 (2-4)</td>
<td>Rx for loss of MR 4</td>
</tr>
<tr>
<td>EURO—SKI</td>
<td>Any</td>
<td>750</td>
<td>50 (2.5)</td>
<td></td>
</tr>
<tr>
<td>ENEST-Freedom</td>
<td>NIL</td>
<td>190</td>
<td>50 (1)</td>
<td></td>
</tr>
<tr>
<td>ENESTop</td>
<td>IM->NIL</td>
<td>126</td>
<td>58 (1)</td>
<td></td>
</tr>
</tbody>
</table>

CML Frontline Rx

- IM = 2nd generation in OS
- “Deep MR” 2nd gen TKI > IM
 - \(\sim 40\%\) 2nd gen; 25\% IM
 - 25\%->40\% if switch IM->2nd gen (equally durable?)
- Discontinuation equally successful all TKIs
- Imatinib = 2nd generation TKIs in lower risk CML
- Second generation TKIs > IM in progression (and high risk?) CML?
- Long-term toxicities (vascular) 2nd gen. TKI > IM
CML Frontline Rx

Generic IM

- Generics = branded IM in potency and toxicity
- \$800,000/QALY for 2nd generation TKIs vs imatinib
- Sun now on 6 m exclusivity clock
 - Generally 70-90% of branded
- Expected price drop
 - Med. ~40% of branded
 - ~15% of branded if > 3 generics
 - In Canada, generics 15-25% of branded

Issues with using generic IM (gIM)

- gIM good for cost-effective, long term use
- But, 2nd gen. TKI better at preventing AP/BC
- 2nd gen. TKI better at deep remissions
 - Cost savings with discontinuation?
- Could a cost-effective strategy be hi dose IM?

Best use of gIM should be guided by treatment goals?
Costs of Treatment-free remission (TFR)

be careful what you ask for…

- **TKI**
 - 3 years of Rx and 2 years CMR @ $100,000/year
 - Say 40% get qualifying CMR
 - Say 50% stay in TFR after discontinuation
 - $2,500,000 patient-TFR

- **Transplant**
 - Transplant and 3 years chronic GVHD $1,000,000
 - Survival 85%
 - TFR rates 90%
 - $1,310,000 patient-TFR
The great unfunded trial

Milestones

Generic IM 2nd Gen. TKI

OUTCOMES
1. MR at 12 m
2. PFS
3. Crossover
4. Cost
5. Toxicity

OFF
Simulation of this trial

“Winner” (of QALY) is 2nd generation TKI, then IM
Haven’t built discontinuation into model yet.
Stay tuned.

Rochau, submitted, 2016
What do you want from life?*

WE WANT…
• Cheap meds!
• To not have an MI.
• To prevent blast crisis.
• A CMR and TKI discontinuation.
• Want cake, eat it too.

THUS, WE WILL…
• Use generic IM.
• Exercise! And generic IM.
• Use second gen. TKI.
• Use second gen. TKI.
• High dose IM?

* With apologies to The Tubes, circa 1975
CML Therapy in 2016-my guess

- Generic IM for low and intermediate risk
- Generic IM for older, sicker patients
- Second generation TKIs for higher-risk Sokal
 - until CCyR or MMR, then -> generic IM
 - Indefinitely if nervous
- Second generation TKIs for younger patients in whom Rx discontinuation is important