Emerging Paradigms in the Treatment of Localized Rectal Cancer

Christopher Willett, MD
Duke Cancer Institute

Case Presentation

• 65 year old man in good health developed rectal bleeding and narrowing of stools
• Rigid sigmoidoscopy
• Pelvic MRI
• Colonoscopy/Abdominal and Thoracic Imaging
Rigid sigmoidoscopy

- 7 cm from anal verge
- Bulky and nearly circumferential
- Bx- MD Adenoca

MRI Axial Image
MRI Sagittal Image

Audience Polling Results

Treatment Recommendations: Next Step?

1. Total Mesorectal Excision
2. FOLFOX Chemotherapy
3. US Style ChT/RT (50.4 Gy with capecitabine)
4. Above --> FOLFOX (6 cycles)
5. Short Course Radiation Therapy (25 Gy in 5 Fractions)
Pre- and Post- Radiation Therapy and Chemotherapy

Audience Polling Results

Treatment Recommendations: Next Step?

1. Total Mesorectal Excision
2. Transanal Excision
3. Careful observation with Surgery reserved for Salvage
4. Brachytherapy application

56% 17% 22% 4%
TOTAL MESORECTAL EXCISION

Distal resection margin after TME is about 2cm above dentate line.

Pathology of Resected Specimen

ypT0N1 (1/15 sampled mesorectal LN)
Paradigms in Treatment of Resectable Rectal Cancer

- Short Course vs. Long Course
- Neoadjuvant ChT ± RT
- Cure and Organ Preservation without Surgery
Rectal Cancer: Short-Course (SC) vs Long-Course (LC) Radiation

European SC: 25 Gy/5Fx
- Immediate Surgery
- No Δ in Preop Stage
- Lower Cost
- Excellent Compliance
- ? Less Acute Toxicity

U.S. LC: 50.4 Gy + ChT
- Delayed Surgery
- Improved Path Resp Rates
- More Tumor Regression
- Sphincter Preservation
- ? Improved Late Effects
- ? Watch and Wait

Phase III Trials: SC vs LC

2. TROG (2012)
4. Polish II (2016)
Polish Preoperative Phase III Trial

T3,4

50.4 Gy/5-FU/LV → Surg (median 78 d)
5 Gy x 5 → Surg (median 8 d)

- 316 Pts with T3-4 Resectable Distal Cancers
- No Involvement of the Sphincter
- Total mesorectal excision (TME) Only for Distal Tumors
- No Central QA

Bujko et al: Radiother Oncol 2004

Polish Trial: Results

<table>
<thead>
<tr>
<th>Preoperative Schedule</th>
<th>Path CR (%)</th>
<th>Sphincter Preservation Rate (%)</th>
<th>LF (%)</th>
<th>4 yr OS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Gy (155 Pts)</td>
<td>1</td>
<td>61</td>
<td>9</td>
<td>67.2</td>
</tr>
<tr>
<td>50.4 Gy + 5-FU (157 Pts)</td>
<td>16*</td>
<td>58</td>
<td>14.2</td>
<td>66.2</td>
</tr>
</tbody>
</table>

Bujko et al: BJS 2006
Polish Trial: Results

<table>
<thead>
<tr>
<th>Preoperative Schedule</th>
<th>Acute G3-4 Toxicity (%)</th>
<th>Compliance (%)</th>
<th>Late Toxicity (%)</th>
<th>Severe Late Toxicity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Gy (155 Pts)</td>
<td>3.2*</td>
<td>97.9*</td>
<td>28.3</td>
<td>10.1</td>
</tr>
<tr>
<td>50.4 Gy + 5-FU (157 Pts)</td>
<td>18.2</td>
<td>69.2</td>
<td>27</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Bujko et al: BJS 2006

TROG Trial

<table>
<thead>
<tr>
<th>Pelvic RT</th>
<th>Resection</th>
<th>Adjuvant chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>25 Gy/5 fx/ 5d</td>
<td>within 1 wk</td>
</tr>
<tr>
<td>LC</td>
<td>50.4 Gy/28 fx/ 5w3d + 5FU C 225 mg/m²/day 7d/wk</td>
<td>in 4 - 6 wk</td>
</tr>
</tbody>
</table>

Main eligibility criteria:
- localized adenocarcinoma of the rectum
- ultrasound or MRI staged clinical T3NanyM0

Ngan et al: J Clin Oncol 2012
Compliance

- Short Course (25 Gy/5 Fxs): 100%
- Long Course (50.4 Gy/28 Fxs): 93%
- Concurrent 5-FU: 84% (within 10% of prescribed dose)
- Adjuvant ChT: 85% Short Course and 86% Long Course

Ngan et al: J Clin Oncol 2012

Three-year LR rates between SC and LC were not statistically significantly different

No differences in rates of distant recurrence, relapse-free survival, overall survival

Comparison of QOL has become a clinically important issue in assessing their relative merits
Stockholm III Rectal Cancer Trial

25 Gy (1 week – immediate surgery [IS])

25 Gy (4-8 weeks – delayed surgery [DS])

50 Gy (4-8 weeks - delayed surgery [DS])

303 Pts. “Resectable”

Pettersson et al: British J Surgery 2010

Stockholm III: Preliminary Results

<table>
<thead>
<tr>
<th></th>
<th>p CR (%)</th>
<th>APR (%)</th>
<th>Severe Acute Toxicity (%)</th>
<th>Anastomotic Leak (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Gy (118 pts) IS</td>
<td>0.8</td>
<td>30</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>25 Gy (120 pts) DS</td>
<td>12.5</td>
<td>33.3</td>
<td>4.2</td>
<td>11</td>
</tr>
<tr>
<td>50 Gy (65 pts) DS</td>
<td>5.0</td>
<td>20</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Pettersson et al: British J Surgery 2010
Stockholm III: Interim Results

<table>
<thead>
<tr>
<th></th>
<th># Pts.</th>
<th>pCR (%)</th>
<th>Dworak G 4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Gy IS</td>
<td>234</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>25 Gy DS</td>
<td>228</td>
<td>11.8</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Pettersson et al: British J Surgery 2015

Swedish Rectal Cancer Trial: Late Toxicity

Birgisson et al: British J Surgery 2008
Bowel Function of TME Trial Patients 14 Years Post-Treatment

<table>
<thead>
<tr>
<th>Low Anterior Resection Syndrome</th>
<th>Preoperative RT + TME (n=118)</th>
<th>TME (n=124)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>55.9</td>
<td>35.5</td>
</tr>
<tr>
<td>Minor</td>
<td>19.5</td>
<td>25.0</td>
</tr>
<tr>
<td>None</td>
<td>24.6</td>
<td>39.5</td>
</tr>
</tbody>
</table>

Chen et al: Clinical Colorectal Cancer 2015

Long-term Quality of Life Analysis

- **Primary objective**
 - To compare long-term quality of life (QOL) between short course and long course preoperative radiotherapy for rectal cancer

- **Eligibility criteria**
 - Participants of the TROG 01.04 trial
 - Completed a baseline QOL
 - Completed at least one other QOL at or after 12 months

Endpoints

- Changes from baseline of nine QOL scales were nominated, prior to data analysis, as the major endpoints
 - global health status/QoL
 - sexual functioning
 - sexual enjoyment
 - micturition
 - gastrointestinal tract
 - male sexual problems
 - constipation
 - diarrhea
 - defecation problems

- An area-under-curve (AUC) statistic (from 12 to 60 months) was used to assess the major endpoints

Results

Global Health Status/QOL

Gastro-intestinal Tract

AUC analysis indicated there was little difference in global health status between arms. Mean diff = -2.5
P = 0.33 [95% CI: -7.48 to 2.48]

Difference in mean QOL = 3.3
P = 0.13 [95% CI: -0.96 to 7.48]

Results

Sexual functioning

Sexual functioning by time by arm (from LMM)

Difference in mean QOL = -0.3
P = 0.93 [95% CI: -6.26 to 5.70]

Sexual enjoyment

Sexual enjoyment by time by arm (from LMM)

Difference in mean QOL = -2.8
P = 0.67 [95% CI: -15.54 to 9.98]

Male sexual problems

Male sexual problems by time by arm (from LMM)

Difference in mean QOL = -2.1
P = 0.73 [95% CI: -13.83 to 9.72]

Female sexual problems was not analysed due to lack in response to this question (n=11)
Results

Diarrhea

Difference in mean QOL = 6.2

P = 0.17 [95% CI: -2.59 to 15.03]

Constipation

Difference in mean QOL = 1.7

P = 0.65 [95% CI: -5.66 to 9.10]

Results

Micturition

Difference in mean QOL = -1.4

P = 0.52 [95% CI: -5.86 to 2.97]

Defecation problems

Difference in mean QOL = 3.0

P = 0.34 [95% CI: -3.16 to 9.09]

Conclusion

Assuming >10 points difference in QOL is clinically important, during the period from 12-60 months following registration for the trial, in patients alive and without having relapsed, results suggest that:

- There is no important difference between SC and LC for global health status, constipation, sexual functioning, micturition, GIT, and defecation;

- Possible important differences have not been ruled out in:
 - diarrhoea [95% CI: -2.59 to 15.03]
 - sexual enjoyment [95%: -15.54 to 9.98] and
 - male sexual problems [95% CI: -13.83 to 9.72].

Resectable Rectal Cancer: SC vs. LC

- Similar rates of local control, distant metastases, and overall survival
- Similar rates of late (intermediate time) toxicity
- Similar impact on QOL (intermediate time)
- Watch late effects with SC (> 5years!) – Swedish and TME trials (no comparable data – Long Course)
- Time after treatment is important for tumor regression.
Survival data from randomised clinical trials: Adjuvant chemotherapy vs. Observation

<table>
<thead>
<tr>
<th>Study</th>
<th>Objective</th>
<th>Adjuvant chemotherapy arm</th>
<th>Observation arm</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EORTC 22921</td>
<td>10-year OS</td>
<td>(n = 506) 51.8%</td>
<td>(n = 505) 48.4%</td>
<td>0.32</td>
</tr>
<tr>
<td>I-CNR-RT Italian trial</td>
<td>5-year OS (in resected patients only)</td>
<td>(n = 296) 69%</td>
<td>(n = 294) 70%</td>
<td>0.77</td>
</tr>
<tr>
<td>PROCTOR SCRIPT</td>
<td>5-year OS</td>
<td>(n = 216) 79.2%</td>
<td>(n = 221) 80.4%</td>
<td>0.77</td>
</tr>
<tr>
<td>CHRONICLE</td>
<td>3-year DFS</td>
<td>(n = 54) 72.5%</td>
<td>(n = 59) 71.3%</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Boustani et al: Clinical Onc 2016
Survival data from randomised clinical trials: 5-fluorouracil (5-FU)- or oxaliplatin-based adjuvant chemotherapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Objective</th>
<th>5-FU-based adjuvant chemotherapy</th>
<th>Oxaliplatin-based adjuvant chemotherapy</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETACC 6 (phase III)</td>
<td>3-year DFS</td>
<td>$n = 547$ 74.5%</td>
<td>$n = 547$ 73.9%</td>
<td>0.78</td>
</tr>
<tr>
<td>CAO/ARO/AIO-04 (phase III)</td>
<td>3-year DFS</td>
<td>$n = 637$ 71.2%</td>
<td>$n = 628$ 75.9%</td>
<td>0.038</td>
</tr>
<tr>
<td>ADORE (phase II)</td>
<td>3-year DFS</td>
<td>$n = 149$ 62.9%</td>
<td>$n = 146$ 71.6%</td>
<td>0.047</td>
</tr>
</tbody>
</table>

Boustani et al: Clinical Onc 2016

European/Scandinavian Treatment Algorithm of SC and LC

Low Risk
- T1-3(< 5mm): Mid/Upper Rectum
- T1-3(Superficial): Distal Rectum
- N0
- Extramural Vascular Invasion: No
- MRF: Clear
- Risk of LR <10%

Intermediate Risk
- T3(>5mm)
- T4(Posterior vaginal wall)
- Or
- N1/2
- Extramural Vascular Invasion: Yes
- MRF: clear (>1 mm)
- Risk of LR 10-20%

High Risk
- T4
- N0/1/2
- MRF: involved
- Risk of LR > 20%

Preoperative
- SC EBRT
- TME
- Adjuvant ChT

Preoperative
- EBRT/ChT
- TME
- Adjuvant ChT

Smith and Garcia-Aguilar: J Clin Oncol 2015
Neoadjuvant Chemotherapy for Resectable Rectal Cancer

• 3 Small single arm phase II trials
• 1 Retrospective report (abstract only)
• 1 Pilot study

MSKCC cT3N0

• Pooled analysis 6 high volume centers
• 188 cT3N0 by EUS/MRI
• CRT-> Surgery

• Results
 – 22% pathologically positive mesorectal LN
 – Many patients understaged by preoperative imaging

Guillem et al: J Clin Oncol 2008
Japanese Single Arm Trial

- 2001-2004, RT availability limited in Japan + ‘toxicity unfavorable’
- 26 patients, T3-4 N0-2, mid/lower rectum
- IFL chemo x 2 cycles

-R0: 100%
-downstaging in 58%
-pCR: 1 patient
-5y DFS: 74%
-5y OS: 84%

Ishii et al: Eur J Surg Oncol 2010

Rectal Cancer: Neoadjuvant Chemotherapy

GEMCAD 0801 Trial

- 46 pts with CS II-III Rectal Ca
- 4 cycles capecitabine + oxaliplatin + bevacizumab → Surgery
- 44 Pts Surgery: All R0 Resection, 20% pCR
- AnastomoticLeaks: 13%; G5 Toxicity: 3 pts.

Fernandez-Martos, The Oncologist 2014
Japanese Phase II Trial

- CAPOX plus bev prior to TME
- 32 patients, poor-risk per MRI
 - R0: 90%
 - downstaging in 37%
 - pCR: 13%
 - post-op complications: 43% (attributed to bev? anastomotic leakage, perforation)

Uehara et al: Jpn J Clin Oncol 2013

MSKCC Retrospective

- Pts receiving chemo alone because of suspected metastatic disease, contraindications/refusal of XRT
- 20 patients, 6 rectal
- FOLFOX +/- bev
 - overall pCR 35%

Rectal patients n=6:
- pCR: 3 patients
- tumor regression: 5 patients

Cercek et al: JCO 2010; 28(15S) abst 3511
MSKCC Pilot Study

- Clinical stage II/III rectal
- non-T4 tumors
 - Sphincter-sparing candidates (LAR with TME)
 - Nonthreatened CRM by MRI
- FOLFOX+ bev x 6
- 32 patients (2 had preop XRT)
 - R0: 100%
 - downstaging in 100%
 - pCR: 25%
 - 4y local recurrence: 0%
 - 4y DFS: 84%
 - 4y OS: 91%

Schrag et al: J Clin Oncol 2014

PROSPECT

Preoperative Radiation Or Selective Preoperative radiation and Evaluation before Chemotherapy and TME

An Alliance Phase II/III Trial of Neoadjuvant FOLFOX with Selective Use of Combined Modality Chemoradiation for Locally Advanced Rectal Cancer Patients Undergoing Low Anterior Resection with Total Mesorectal Excision

clinicaltrials.gov NCT01515787
Inclusion Criteria

- Biopsy proven rectal adenocarcinoma
- Tumor tissue located at **5-12 cm** from the anal verge
- Candidate for sphincter sparing surgery
- ECOG Performance Status 0, 1 or 2
- Surgeon is TME credentialed
- Baseline Clinical staging: T2N1, T3N0, T3N1
 - Physical exam by primary surgeon
 - Proctoscopy
 - MRI or ERUS (MRI preferred)
 - CT scan of Chest/Abdomen/Pelvis

clinicaltrials.gov NCT01515787

Study Schema

“Standard Arm”

FOLFOX x 6

TME

FOLFOX x 8

“Selective Arm”

FOLFOX x 2

TME

FOLFOX x 6

Response >20%

RANDOMIZE 1:1

Response <20%

clinicaltrials.gov NCT01515787
Caution with Neoadjuvant Chemotherapy

- Inclusion relies on imperfect preoperative imaging

<table>
<thead>
<tr>
<th>Variable</th>
<th>Preoperative Chemoradiotherapy (N=415)</th>
<th>Postoperative Chemoradiotherapy (N=384)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histopathological finding (%)</td>
<td>Complete response</td>
<td>8</td>
</tr>
<tr>
<td>TNM stage</td>
<td>I</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>6</td>
</tr>
</tbody>
</table>

Sauer et al: NEJM 2004

Chemotoxicity

Second cancer
- 5.5% FOLFOX4 group
- 6.1% LV5FU2 group

Andre et al: J Clin Oncol 2009
Intensification of Neoadjuvant Treatment

- Chemotherapy → LC → Surgery
- SC or LC → Chemotherapy → Surgery

Royal Marsden: Neoadjuvant Chemotherapy + RT/Chemotherapy

105 pts: “poor risk” rectal ca:
- Capecitabine + oxaliplatin (12 wks)
- 45 Gy with capecitabine
- TME (6 wks)
- Capecitabine (12 wks)

Chau et al: Lancet Oncol 2010
Royal Marsden: Neoadjuvant Chemotherapy + RT/Chemotherapy

- ChT not completed: 12/105 (11%)
- 5 Deaths During Neoadjuvant ChT
- MR scan: 74% RR after ChT
- TME: 95/105 (90%)
- pCR: 21/105 (20%)

Chau et al: Lancet Oncol 2010

GCR-3: Ph II Preop Trial

- **High Risk Rectal Ca** 108 pts
 - CapOx/RT → TME
 - → 4 Cyc CapOx
 - 71%: Adjuvant ChT
 - 4 Cyc CapOx → RT/ChT → TME
 - 96%: Neoadjuvant ChT

Copyright 2016©, National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
Spanish GCR-3 Trial Results

<table>
<thead>
<tr>
<th>Neoadjuvant Tx</th>
<th>R0 Rate (%)</th>
<th>pCR Rate (%)</th>
<th>5 yr LF / DM (%)</th>
<th>5 yr OS/ DFS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChT/RT TME 4 Cycles CapOx (n=52)</td>
<td>87</td>
<td>13</td>
<td>2 / 21</td>
<td>78 / 64</td>
</tr>
<tr>
<td>4 Cycles CapOx Ch/RT TME (n=56)</td>
<td>86</td>
<td>14</td>
<td>5 / 23</td>
<td>75 / 62</td>
</tr>
</tbody>
</table>

Polish II: Ph III Trial

Fixed cT3or cT4

515 pts

5 Gy x 5 mFOLFOX x 3 Surgery

50 Gy + FU/Leu ± Oxal Surgery

Polish II Trial Results

<table>
<thead>
<tr>
<th>Neoadjuvant Tx</th>
<th>R0 Rate (%)</th>
<th>pCR Rate (%)</th>
<th>LF / DM (%)</th>
<th>3 yr OS/ DFS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Gy x 5 FOLFOX4 x 3 Surgery n=264</td>
<td>77</td>
<td>16</td>
<td>22 / 30</td>
<td>73* / 53</td>
</tr>
<tr>
<td>50.4 Gy+FU/Leu ± Oxal Surgery n=215</td>
<td>71</td>
<td>12</td>
<td>21 / 27</td>
<td>65* / 52</td>
</tr>
</tbody>
</table>

Polish II Trial Results

<table>
<thead>
<tr>
<th>Neoadjuvant Tx</th>
<th>G3/4 Toxicity Rate (%)</th>
<th>Toxic Deaths (%)</th>
<th>Postop Toxicity (%)</th>
<th>Late Toxicity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Gy x 5 FOLFOX 4 x 3 Surgery n=264</td>
<td>23</td>
<td>16</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>50.4 Gy+FU/Leu ± Oxal Surgery n=215</td>
<td>21</td>
<td>12</td>
<td>25</td>
<td>22</td>
</tr>
</tbody>
</table>

Rapido Trial
Locally Advanced Rectal Cancer

Randomisation

Experimental arm B:
5x5 Gy short course RT
6 cycles CAPOX
TME surgery

Standard arm A:
Chemoradiotherapy
TME surgery
8 cycles CAPOX

Nilsson et al: BMC Cancer 2013

Adding mFOLFOX after Neoadjuvant Chemoradiation: Multi-site Phase II Study

292 Patients with Rectal Cancer:
• Clinical Stage II (T3-4, N0) or III (any T, N1-2)
• Cancers within 12 cm of the anal verge
• Local Staging: EUS or MRI
• Accrued Patients from 2004-2012

Garcia-Aguilar et al: Lancet Oncology 2015
Trial Protocol

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous infusion + radiotherapy</td>
<td>Rest</td>
<td>mFOLFOX6 (two cycles)</td>
<td>Rest</td>
</tr>
<tr>
<td>Rest</td>
<td>Total mesorectal excision</td>
<td>Total mesorectal excision</td>
<td>Total mesorectal excision</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from start of chemoradiation to surgery (weeks)</td>
<td>14·2 (4·3)</td>
<td>17·1 (2·9)</td>
<td>21·0 (2·7)</td>
<td>25·2 (4·0)</td>
<td></td>
</tr>
<tr>
<td>p value</td>
<td>0·0001</td>
<td></td>
</tr>
</tbody>
</table>

| Time from end of chemoradiation to surgery (weeks) | 8·5 (4·2) | 11·1 (2·9) | 15·4 (2·6) | 19·3 (4·2) |
| p value | 0·0001 |

Surgical Results

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n=60)</th>
<th>Group 2 (n=67)</th>
<th>Group 3 (n=67)</th>
<th>Group 4 (n=65)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from start of chemoradiation to surgery (weeks)</td>
<td>14·2 (4·3)</td>
<td>17·1 (2·9)</td>
<td>21·0 (2·7)</td>
<td>25·2 (4·0)</td>
<td>0·0001</td>
</tr>
<tr>
<td>Time from end of chemoradiation to surgery (weeks)</td>
<td>8·5 (4·2)</td>
<td>11·1 (2·9)</td>
<td>15·4 (2·6)</td>
<td>19·3 (4·2)</td>
<td>0·0001</td>
</tr>
<tr>
<td>Sphincter-saving surgery</td>
<td>46 (77%)</td>
<td>50 (75%)</td>
<td>50 (75%)</td>
<td>44 (68%)</td>
<td>0·68</td>
</tr>
<tr>
<td>Ileostomy</td>
<td>38/46 (83%)</td>
<td>43/50 (86%)</td>
<td>47/50 (94%)</td>
<td>38/43 (88%)</td>
<td>0·33</td>
</tr>
<tr>
<td>Resection with negative margins</td>
<td>59 (98%)</td>
<td>67 (100%)</td>
<td>64 (96%)</td>
<td>64 (100%)</td>
<td>0·089</td>
</tr>
<tr>
<td>Number of nodes examined</td>
<td>12 (2–31)</td>
<td>14 (2–30)</td>
<td>13 (2–30)</td>
<td>11 (1–47)</td>
<td>0·20</td>
</tr>
<tr>
<td>Pelvic fibrosis</td>
<td>2·4 (1·7)</td>
<td>3·9 (2·6)</td>
<td>4·4 (2·4)</td>
<td>3·9 (2·4)</td>
<td>0·0001</td>
</tr>
<tr>
<td>Technical difficulty</td>
<td>4·6 (2·7)</td>
<td>4·9 (2·8)</td>
<td>5·1 (2·5)</td>
<td>4·8 (2·4)</td>
<td>0·80</td>
</tr>
<tr>
<td>Estimated blood loss (mL)</td>
<td>200 (50–1200)</td>
<td>225 (25–1500)</td>
<td>200 (50–1000)</td>
<td>150 (0–1000)</td>
<td>0·62</td>
</tr>
</tbody>
</table>

Garcia-Aguilar et al: Lancet Oncology 2015

Copyright 2016©, National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
Surgical Complications

<table>
<thead>
<tr>
<th>Grading</th>
<th>Group 1 (n=60)</th>
<th>Group 2 (n=67)</th>
<th>Group 3 (n=67)</th>
<th>Group 4 (n=65)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># of Pts.</td>
<td># of events</td>
<td># of Patients</td>
<td># of events</td>
<td># of patients</td>
</tr>
<tr>
<td>None</td>
<td>36 (60%)</td>
<td>NA</td>
<td>41 (61%)</td>
<td>NA</td>
<td>44 (66%)</td>
</tr>
<tr>
<td>Grade 1</td>
<td>11 (18%)</td>
<td>16</td>
<td>12 (18%)</td>
<td>18</td>
<td>10 (15%)</td>
</tr>
<tr>
<td>Grade 2</td>
<td>4 (7%)</td>
<td>6</td>
<td>10 (15%)</td>
<td>12</td>
<td>10 (15%)</td>
</tr>
<tr>
<td>Grade 3a</td>
<td>2 (3%)</td>
<td>2</td>
<td>1 (1%)</td>
<td>2</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Grade 3b</td>
<td>5 (8%)</td>
<td>6</td>
<td>2 (3%)</td>
<td>2</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Grade 4a</td>
<td>2 (3%)</td>
<td>2</td>
<td>1 (1%)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Garcia-Aguilar et al: Lancet Oncology 2015

Pathological Tumor Response

<table>
<thead>
<tr>
<th>Grading</th>
<th>Group 1 (n=60)</th>
<th>Group 2 (n=67)</th>
<th>Group 3 (n=67)</th>
<th>Group 4 (n=65)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path complete response</td>
<td>11 (18%)</td>
<td>17 (25%)</td>
<td>20 (30%)</td>
<td>25 (38%)</td>
<td>0.0036</td>
</tr>
<tr>
<td>Partial response</td>
<td>44 (73%)</td>
<td>50 (75%)</td>
<td>46 (69%)</td>
<td>39 (60%)</td>
<td>..</td>
</tr>
<tr>
<td>Stable disease</td>
<td>5 (8%)</td>
<td>0</td>
<td>1 (1%)</td>
<td>1 (2%)</td>
<td>..</td>
</tr>
</tbody>
</table>

Garcia-Aguilar et al: Lancet Oncology 2015
Conclusions

- Increasing cycles of mFOLFOX6 after ChT/EBRT and before Surgery: ↑ in Path CR rates
- ↑ Response: without tumor progression, ↑ technical difficulties or surgical complications.
- Support efforts to shift systemic treatments into neoadjuvant setting
- Delivering Chemotherapy after EBRT/ChT: More effective at increasing pCR rates than before
- ? Higher proportion of patients for less invasive surgery or watch and wait approaches
Rectal Cancer: Organ Preservation

Papillon: Endocavitary Irradiation of “Early” Rectal Cancer (1951)

Papillon: Technique/Results

- 1951-1967: 123 Pts with minimum 5 yr follow-up
- 3-5 applications (2500-4000 R) with 50 kV unit over 4-6 weeks
- 84 Pts (68%) Disease free (>5 yrs)
- 14 pts (11%) Local Failure: 5 salvaged with surgery
- 9 pts (7%) Distant Metastases

Non-Operative Tx

- PMH: 229 pts
- RT alone (unresectable, medically unfit, refused surgery)
- Dose 40 Gy/10 fx to 60 Gy/30 fx
- mobile tumors: cCR 50%
- cCR mobile crude LF: 38%

Brierley et al: IJROBP 1995

Non-Operative Treatment of Rectal Cancer after RT/Chemotherapy (50.4 Gy/5-FU/LV)

• 360 pts with low rectal cancer
 – 99 pts (28%) with clinical complete response
 • OBSERVED
 – Mean follow-up 60 months
 » 7 systemic recurrences
 » 5 local recurrences
 » 1 systemic and local recurrence
 » 5 yr OS: 93%
 » 5 yr DFS: 85%

Habr-Gama et al: J of GI Surgery 2006
T3 Rectal Cancer

• 183 pts with distal rectal cancer (cT2-4, N 0/+)
 – 90 pts (49%) with clinical complete response at 8 weeks
 • Watch and Wait
 – Median follow-up 60 months
 » 5 yr Local RFS: 69% (28 LF)
 » Salvage therapy: 26/28 pts (4 LF)
 » 5 yr Local RFS: 94% (including salvage)
 » 5 yr Cancer Specific OS: 91%
 » 5 yr DFS: 68%

MSKCC: Non-Operative Management (NOM)

- 447 Pts (Stage I-III Rectal Ca): Neoadjuvant Tx (2006-2014)
- 73 Pts. Identified: cCR and NOM
- 72/369 Pts (20%): TME with pCR

Smith et al: ASCO GI Symposium 2015 (abstract 509)

MSKCC: Non-Operative Management Results

<table>
<thead>
<tr>
<th>Group</th>
<th>Pt #</th>
<th>Local Regrowth</th>
<th>LR after resection</th>
<th>DM</th>
<th>DSS</th>
<th>OS</th>
<th>Rectal preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM</td>
<td>73</td>
<td>19</td>
<td>0</td>
<td>9</td>
<td>69(91%)</td>
<td>67(71%)</td>
<td>56(72%)</td>
</tr>
<tr>
<td>TME/pCR</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>70(96%)</td>
<td>68(95%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Smith et al: ASCO GI Symposium 2015 (abstract 509)
MSKCC Non-Operative Management: Conclusions

- Highly selected pts (cCR) to Neoadjuvant Tx:
- NOM with surgical salvage of local tumor regrowth achieved local control in all pts.
- 4 yr oncologic outcome for NOM pts was comparable to pts with pCR after resection
- NOM does not compromise oncologic outcome and rectal preservation is achieved in a majority of patients.

Smith et al: ASCO GI Symposium 2015 (abstract 509)

Clinical Complete Response

- **DRE**
 - flat mucosa
 - smooth induration / scar
 - no mass / nodule

- **Proctoscopy**
 - normal, flat mucosa
 - +/- pale scar
 - +/- telangiectasias
 - no ulceration
 - no luminal narrowing/stenosis

- **Imaging**
 - no detectable tumor or LNs
 - (imaging not standardized)

*Clinical assessment at 8 +/- 4 weeks after CRT—MSKCC Consensus Conference January 2014 (Smith JI, et al. Manuscript in preparation)
Post-treatment follow-up

Typical surveillance and intervals:

<table>
<thead>
<tr>
<th>Yr1</th>
<th>Yr2</th>
<th>Yr3-5</th>
<th>>Yr5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endoscopy</td>
<td>q3m</td>
<td>q4m</td>
<td>q6m</td>
</tr>
<tr>
<td>DRE</td>
<td>q3m</td>
<td>q4m</td>
<td>q6m</td>
</tr>
<tr>
<td>Imaging</td>
<td>q6m</td>
<td>q6m</td>
<td>q6-12</td>
</tr>
</tbody>
</table>

“Wait-and-See”

- **Netherlands trial**
- 21 pts cCR after chemoradiotherapy prospectively followed
- 3 to 6 monthly MRI, endoscopy, and CT
- Mean f/u 25 months
- 1 LR undergoing surgical salvage; others disease free

Maas et al: J Clin Oncol 2011
“Wait-and-See”

- Conclusion: Wait-and-see with strict selection criteria, up-to-date imaging techniques and follow-up is feasible and results in promising outcomes

“Watchful Waiting”

- Danish Prospective Trial
- 55 pts cT2-3,N0-1 (1999-2013)
- Tx: 60 Gy IMRT + 5 Gy endorectal brachytherapy + tegafur-uracil
- 40 pts cCR after chemoradiotherapy prospectively followed
- 3 to 6 monthly MRI, endoscopy, and CT
- Median follow-up 23.9 months
- 9 LR undergoing surgical salvage; 3 DM
- G3 Bleeding – 3 pts and sphincter function – excellent

Appelt et al: Lancet Oncology 2015
“Wait-and-See” Trials

- MSKCC Randomized Phase II Trial
- Royal Marsden Hospital
- Instituto do Cancer do Estado de São Paulo (Randomized Phase II)
- CMT with > 80% regression: (OPERA) trial standard CRT (45 Gy + 5.4 Gy boost) versus (45 Gy) contact X-ray radiotherapy boost (UK-phase III)
- European expert panel-cCR pts should be given option

Summary

- Short Course vs. Long Course Treatment
- Neoadjuvant ChT ± RT
- Cure and Organ Preservation without Surgery
What is the Optimal Neoadjuvant Therapy for Clinical Stage II and III Rectal Cancer?

1. ChT Only (FOLFOX)
2. Long Course Radiation Therapy + Concurrent Fluoropyrimidine
3. Short Course Radiation Therapy
4. Radiation Therapy Followed by ChT (FOLFOX)

Randomized Trials Have Shown that Short Course Radiation Therapy:

1. Inferior DFS and OS Rates Vs. Long Course RT + ChT
2. Higher Acute and Late Complication Rates Vs. Long Course RT + ChT
3. Superior Quality of Life Vs. Long Course RT + ChT
4. Pathological CR Rates Depend on Time from Completion of Radiation Therapy
For Patients Having a Complete Clinical Response After Long Course RT + ChT: Next Step?

1. Total Mesorectal Excision
2. Transanal Excision
3. Observation with Careful Follow-up
4. Chemotherapy (FOLFOX)

48% 3% 36% 14%