Diffuse Large B-cell Lymphoma: Is Cell of Origin Necessary for Treatment Selection?

Andrew D. Zelenetz, MD, PhD
Memorial Sloan Kettering Cancer Center
WHO 2016: Diffuse Large B Cell Lymphoma is Multiples Diseases

<table>
<thead>
<tr>
<th>Diffuse large B-cell lymphoma (DLBCL), NOS</th>
<th>Germinal Center</th>
<th>Activated B-Cell</th>
<th>Unclassified</th>
<th>Cell of origin (COO) to be determined by best available means</th>
</tr>
</thead>
<tbody>
<tr>
<td>T cell/histiocyte-rich large B-cell lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary DLBCL of the CNS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary cutaneous DLBCL, leg type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBV positive DLBCL, NOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBV+ Mucocutaneous ulcer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLBCL associated with chronic inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphomatoid granulomatosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary mediastinal (thymic) large B-cell lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intravascular large B-cell lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALK positive large B-cell lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasmablastic lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary effusion lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHV8 positive DLBCL, NOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cell of Origin (COO) in DLBCL Contributes to Biological and Clinical Heterogeneity

Cell of Origin (COO) in DLBCL Contributes to Biological and Clinical Heterogeneity

Cell of Origin (COO) in DLBCL Contributes to Biological and Clinical Heterogeneity

Cell of Origin (COO) in DLBCL Contributes to Biological and Clinical Heterogeneity

Cell of Origin (COO) in DLBCL Contributes to Biological and Clinical Heterogeneity

- **COO determination**
 - Identifies tumors with distinct biology
 - May provide prognostic information
 - May be predictive for treatment selection

COO is not the whole story: Increased complexity revealed by targeted sequencing in DLBCL

Intlekofer et al, Blood 2014 124:704
Determining COO in DLBCL
Wright Classifier enables patient level assignment of COO

- Wright classifier: statistical method based on Bayes' rule that estimates the probability of membership in one of two cancer subgroups
 - Included 27 genes which separated patients into: GCB, ABC or ‘Type 3’ (now referred to as unclassifiable)
 - Basis for subsequent classifiers

Methods for determination of COO

- Gene Expression Profiling (GEP) on fresh tissue
 - ‘The gold standard’
 - Needs the Wright classifier to make patient level assignment to ABC, GCB or unclassifiable
 - Not practically applicable in clinical practice
- Immunohistochemistry
 - Widely available
 - Reproducibility may be difficult
 - Many assays (Hans, Choi, Muris)
 - Lack of correlation with GEP in many studies
- GEP of formalin-fixed paraffin-embedded (FFPE) tissue
 - Multiple platforms
 - Hybrid capture/fluorescent reporter emerging as a widely validated assay
Cell of Origin (COO) by immunohistochemistry using the Hans algorithm

Hans et al. Blood 2004;103:275
Cell of Origin (COO) by immunohistochemistry using the Hans algorithm

Cell of Origin (COO) by immunohistochemistry using the Hans algorithm

Hans et al. Blood 2004;103:275
Outcomes prediction with COO determined by GEP and IHC in patients treated with R-CHOP

Outcomes prediction with COO determined by GEP and IHC in patients treated with R-CHOP

Outcomes prediction with COO determined by GEP and IHC in patients treated with R-CHOP

Lymph2Cx assay for cell of origin

Training Cohort
- 19 ABC, 20 GCB, 12 U
- FFPET blocks

MoCha lab
RNA extraction
Quantitation - Nanodrop

BCCA lab

NanoString GEP
93 genes of interest

Gene selection
15 genes of interest
5 “housekeeper” genes

NanoString GEP
15 genes of interest
5 “housekeeper” genes

NanoString COO Model
“Lymph2Cx”
- QC criteria, gene co-efficient and thresholds

Gene selection based on the Wright classifier

Scott DW et al. Blood 2014; 123:1314; Leroy et al ASCO 2016; unpublished observation
Lymph2Cx assay for cell of origin

- Initial validation set
 n=67
 - 2% misclassification
 - Research platform
 200 ng RNA

Copyright 2016©, National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
Lymph2Cx assay for cell of origin

Inter-laboratory

Highly correlated with "gold standard"

Scott DW et al. Blood 2014; 123:1214; Leroy et al ASCO 2016; unpublished observation
Lymph2Cx assay for cell of origin

Based on validated Wright classifier

Reproducible

Highly correlated with "gold standard"

Is Cell of Origin Prognostic?
Prognostic value of Lymph2Cx assay

- Population registry-based analysis of patients with de novo DLBCL treated with R-CHOP; n=344, 5 excluded for low tumor content 339 analyzed
- Lymph2Cx assay permitted assigning COO 335/339 (99%) cases
 - ABC: 32% (108 of 335); GCB 56% (189 of 335); Unclassified 11% (38 of 335)

GEP on FFPE tissue does not universally show a prognostic difference

RICOVER60: Retrospective application of Lymph2Cx

REMoDL-B: Prospective COO by Illumina DASL array

Pfreunschuh, personal communication; Davies, ASH 2015
Can chemotherapy influence outcome by COO?
Dose-Adjusted (DA)-EPOCH-R

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab</td>
<td>375 mg/m² day 1 IVPB</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>10 mg/m²/day × 4 by CI</td>
</tr>
<tr>
<td>Vincristine</td>
<td>0.4 mg/m²/day × 4 by CI</td>
</tr>
<tr>
<td>Etoposide</td>
<td>50 mg/m²/day × 4 by CI</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>750 mg/m² day 5 IVBP</td>
</tr>
<tr>
<td>Prednisone</td>
<td>60 mg/m² BID days 1-5 oral</td>
</tr>
<tr>
<td>Filgrastim*</td>
<td>Weight-adjusted dose starting day 5 until ANC > 5000/µL</td>
</tr>
</tbody>
</table>

*Recent data from MSKCC showed identical rate of dose-adjustment with filgrastim or pegfilgrastim

- Dosed every 21 days if ANC > 1/µL and PLTS > 100KµL
- Dose-adjusted based on ANC nadir:
 - >500/µL, increase cytotoxic drugs by 20%
 - <500/µL for 1-3 days, no change
 - <500/µL for >3 days or FN, decrease cytotoxic drugs by 20%

Wilson, J Clin Oncol 2008 26: 2717-2724; Lunning et al. SHO, abstract
Testable hypothesis: DA-EPOCH-R is particularly favorable for GCB DLBCL
CALGB 50303: DA-EPOCH-R vs RCHOP21

- **OBJECTIVES:**
 - **Primary**
 - EFS untreated de novo DLBCL treated with RCHOP vs DA-R-EPOCH
 - Determine molecular predictors of outcome (using molecular profiling) in patients treated with these regimens.
 - **Secondary**
 - Compare ORR and OS
 - Compare the toxicity of these regimens in these patients.
 - Correlate the clinical parameters (i.e., toxicity, response, survival outcomes, and laboratory results) with molecular profiling in patients treated with these regimens.
 - Determine the use of molecular profiling for pathological diagnosis

n= 478 patients (239 per treatment arm)

Data to be presented at ASH 2016
Sequential Non-cross resistant chemotherapy
MSKCC 01-142/08-146: DLBCL -- Risk Adapted for Therapy

- Prospective, biopsy controlled determination of “positive PET”
- Treatment is adapted by biopsy, not PET
- No radiation therapy permitted except for testicular disease
- IT methotrexate for aaHR, paranasal sinus, testis, BM
- Two studies with highly similar outcomes, combined analysis

Treatment Schedules:

1. **CS IIIX, III or IV disease, age-adjusted IPI 1, 2, or 3 Risk Factors, Transplant Eligible**
 - **R-C_{1000}HO_{uncapped}P-14 \times 4**
 - **PET**
 - **Repeat Bx**
 - **Bx+**
 - **IC \times 2**
 - **RICE \times 1**
 - followed by HDT/ASCT
 - **Bx-**
 - **IC \times 3**
 - followed by Observation

2. **CS IIIX, III or IV disease, age-adjusted IPI 1, 2, or 3 Risk Factors, Transplant Eligible**
 - **R-R-C_{1000}HO_{uncapped}P-14 \times 3**
 - **PET**
 - **Repeat Bx**
 - **Bx+**
 - **IC \times 3**
 - followed by Observation
 - **Bx-**
 - **\geq 80\%**
 - **Ki-67 < 80\%**
 - **Augmented RICE \times 2**
 - followed by Observation
 - **ICE \times 3**
 - followed by Observation

Copyright 2016©, National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
Sequential R-CHOP→ICE: Overall and Progression-Free Survival by COO
Sequential R-CHOP→ICE: Overall and Progression-Free Survival by COO

Testable hypothesis: Sequential R-CHOP→ICE is particularly favorable for ABC DLBCL
Patients: Untreated DLBCL, age 18-59, aaIPI score = 1 (high LDH, stage III/IV, ECOG PS >1)

*No radiotherapy in both arms

LNH03-2B: Influence of Cell of Origin

Randomly assigned (N = 380)*

Assigned to receive R-ACVBP (n = 196)
 - Had DLBCL at central pathology review (n = 156)
 - Had available samples for immunohistochemical study (n = 141)
 - Could be classified using Hans algorithm (n = 107)
 - Germinal center B-cell type (n = 46)
 - Non-germinal center B-cell type (n = 61)

Assigned to receive R-CHOP (n = 184)
 - Had DLBCL at central pathology review (n = 161)
 - Had available samples for immunohistochemical study (n = 146)
 - Could be classified using Hans algorithm (n = 122)
 - Germinal center B-cell type (n = 55)
 - Non-germinal center B-cell type (n = 67)

LNH03-2B: Influence of Cell of Origin

LHN03-2B: Influence of Cell of Origin

- Does the R-ACVBP result confirm the hypothesis for sequential R-CHOP → ICE?
- After all these are different regimens
- Or are they....

Comparison of R-CHOP/ICE and ACVBP with Consolidation

<table>
<thead>
<tr>
<th>Drug (cytotoxic)</th>
<th>DI mg/m²/week</th>
<th>Total mg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-CHOP/ICE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rituximab</td>
<td>187.5</td>
<td>1500</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>500</td>
<td>4000</td>
</tr>
<tr>
<td>Vincristine</td>
<td>0.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Prednisone</td>
<td>*250</td>
<td>*2000</td>
</tr>
<tr>
<td>Ifosfamide</td>
<td>2500</td>
<td>15000</td>
</tr>
<tr>
<td>Etoposide</td>
<td>150</td>
<td>900</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>2.5</td>
<td>15</td>
</tr>
</tbody>
</table>

*FLAT dosing **Dose as AUC

<table>
<thead>
<tr>
<th>Drug (cytotoxic)</th>
<th>DI mg/m²/week</th>
<th>Total mg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACVBP + Consolidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rituximab</td>
<td>187.5</td>
<td>3000</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>37.5</td>
<td>300</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>600</td>
<td>4800</td>
</tr>
<tr>
<td>Vindesine</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>*10</td>
<td>*80</td>
</tr>
<tr>
<td>Prednisone</td>
<td>150</td>
<td>1200</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>1500</td>
<td>6000</td>
</tr>
<tr>
<td>Ifosfamide</td>
<td>750</td>
<td>6000</td>
</tr>
<tr>
<td>Etoposide</td>
<td>150</td>
<td>1200</td>
</tr>
<tr>
<td>Cytarabine</td>
<td>400</td>
<td>800</td>
</tr>
</tbody>
</table>

New Agents in DLBCL
Lenalidomide for DLBCL: Impact of Cell of Origin

Table: Lenalidomide cycles and response in GCB and Non-GCB DLBCL

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>GCB</th>
<th>Non-GCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenalidomide cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (Range)</td>
<td>2 (1-35)</td>
<td>2 (1-21)</td>
<td>4 (1-35)</td>
</tr>
<tr>
<td>Response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>6 (15.0)</td>
<td>1 (4.3)</td>
<td>5 (29.4)</td>
</tr>
<tr>
<td>PR</td>
<td>5 (12.5)</td>
<td>1 (4.3)</td>
<td>4 (23.5)</td>
</tr>
<tr>
<td>SD</td>
<td>7 (17.5)</td>
<td>7 (30.4)</td>
<td>0</td>
</tr>
<tr>
<td>PD</td>
<td>21 (52.5)</td>
<td>14 (60.9)</td>
<td>7 (41.2)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (2.5)</td>
<td>0</td>
<td>1 (5.9)</td>
</tr>
<tr>
<td>ORR (CR + PR)</td>
<td>11 (27.5)</td>
<td>2 (8.7)</td>
<td>9 (52.9)</td>
</tr>
<tr>
<td>PFS, mo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2.6</td>
<td>1.7</td>
<td>6.2</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.9-4.2</td>
<td>0.3-3.1</td>
<td>2.9-9.6</td>
</tr>
</tbody>
</table>

Hernandez-Illaliturri et al, Cancer 2011 117:5058
Frontline R-CHOP + Lenalidomide (RL-CHOP) in DLBCL or FL: Phase II Study Designs

- Two trials with slightly different dose schedules of lenalidomide
- Compared with historical R-CHOP control (with similar baseline characteristics)

Italian Series: Lenalidomide + R-CHOP21 in Elderly Untreated DLBCL: Efficacy

<table>
<thead>
<tr>
<th>Response</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>45 (92)</td>
</tr>
<tr>
<td>CR</td>
<td>42 (86)</td>
</tr>
<tr>
<td>PR</td>
<td>3 (6)</td>
</tr>
<tr>
<td>SD</td>
<td>0</td>
</tr>
<tr>
<td>PD</td>
<td>3 (6)</td>
</tr>
</tbody>
</table>

Chiappella et al. ASH 2012, Abstract 903.
RL-CHOP vs R-CHOP Control Patients Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>R2CHOP (N=64)</th>
<th>RCHOP (N=87)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Median (range)</td>
<td>65 (22-87)</td>
<td>61 (41-86)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>0.53</td>
</tr>
<tr>
<td>Male</td>
<td>40 (62.5%)</td>
<td>50 (57.5%)</td>
<td></td>
</tr>
<tr>
<td>IPI</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Low</td>
<td>7 (10.9%)</td>
<td>18 (20.7%)</td>
<td></td>
</tr>
<tr>
<td>Low-Intermed.</td>
<td>24 (37.5%)</td>
<td>16 (18.4%)</td>
<td></td>
</tr>
<tr>
<td>High-Intermed.</td>
<td>24 (37.5%)</td>
<td>38 (43.7%)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>9 (14.1%)</td>
<td>15 (17.2%)</td>
<td></td>
</tr>
<tr>
<td>Ann Arbor Stage</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>7 (10.9%)</td>
<td>20 (23.0%)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19 (29.7%)</td>
<td>14 (16.1%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38 (59.4%)</td>
<td>53 (60.9%)</td>
<td></td>
</tr>
<tr>
<td>ECOG PS</td>
<td></td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>0</td>
<td>30 (46.9%)</td>
<td>32 (36.8%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>28 (43.8%)</td>
<td>41 (47.1%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6 (9.4%)</td>
<td>11 (12.6%)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 (0.0%)</td>
<td>3 (3.4%)</td>
<td></td>
</tr>
</tbody>
</table>

- 87 DLBCL consecutive contemporary patients treated with RCHOP
- Identified in MCR lymphoma database
- Same eligibility: stage 2-4 disease
- No major differences in clinical characteristics

Nowakowski et al. ASH 2012, ASCO 2014
Mayo Series: Outcomes for RL-CHOP v R-CHOP Case Match Control by Cell of Origin

Nowakowski et al. ASH 2012, ASCO 2014
E1412: RL-CHOP vs. R-CHOP

Stratification
- Age
- IPI

N=100 evaluable pts

RL-CHOP

R-CHOP

N=100 evaluable pts

10% path ineligibility rate total ~220 pts#

up to 300 patients can be enrolled to meet a goal of 50 ABC DLBCL patients per arm as defined by GEP
ROBUST (NCT02285062): Lenalidomide Plus R-CHOP Chemotherapy (R2-CHOP) Versus Placebo Plus R-CHOP Chemotherapy in Subjects With Untreated ABC-DLBCL, Phase 3, double-blind, placebo-controlled

Inclusion
- DLBCL, ABC-type, untreated
- COO by Lymph2Cx
- Measurable disease by CT/MRI
- ECOG 0-2
- Age 18-80
- IPI ≥2

Exclusion
- Lymphoma other than DLBCL
- HIV, HBV, HCV active infections
- LVEF <45%
- Peripheral neuropathy, grade ≥2
- Other malignancies < 5 years disease free

Sample Size/Statistical Plan
- Sample size: 560
- 90% to detect increase in PFS of 60%

Clinical Endpoints
- Primary: Progression-free survival
- Secondary: OS, CRR, Duration of CR, TTNT, ORR, QOL

Evaluation
- Interim evaluation after cycle 4
- EOT (6 cycles) FDG-PET

Double-blind, placebo controlled
Randomization 1:1

Placebo + R-CHOP × 4

Placebo + R-CHOP × 2

Lenalidomide + R-CHOP × 4

Lenalidomide + R-CHOP × 2

Interim Evaluation NR off study

EOT Evaluation IWG 2007 with Deauville PET

Study Start Date: January 2015
- Estimated Study Completion Date: September 2022
- Estimated Primary Completion Date: June 2018

Copyright 2016©, National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.
Ibrutinib in Rel/Ref DLBCL: Phase II

Eligibility (N = 70)
- Relapsed/refractory de novo DLBCL
- Progressive disease (PD) after ASCT or ineligible for ASCT
- Archival tissue for central review
- No primary mediastinal DLBCL, transformed DLBCL or CNS involvement

Ibrutinib: 560 mg/d, PO

Only includes pts with post baseline LN measurements

ABC (N = 23)
GCB (N = 12)
Unclassifiable (N = 8)
Unknown (N = 3)

* Best response was PD due to clinical progression

Ibrutinib in Rel/Ref ABC-subtype DLBCL: Conclusions

- Ibrutinib showed a clinically meaningful response rate in relapsed/refractory ABC DLBCL, but not in other molecular subtypes
 - ORR: 23% all patients, 41% ABC (17% CR), 5% GCB (all PR)
- Responses by mutational status
 - Did not require CD79b mutation
 - But were better if mutated
 - MYD88 mutations seemed to cause resistance
 - Unless associated with CD79b mutation
 - CARD11 mutation did not respond
 - Expected result since BTK is upstream of CARD11
- Results were consistent with an essential role of BCR signaling in ABC DLBCL
- Future clinical trials of ibrutinib in DLBCL should screen for DLBCL subtype

R-CHOP + Ibrutinib: Phase 1b

Schema

| PART 1: Newly diagnosed: FL, MCL, DLBCL | R-CHOP+Ibrutinib 3 dosing cohorts: 280 mg 420 mg 560 mg |
| PART 2: DLBCL only | R-CHOP+Ibrutinib 560 mg |

R-CHOP x 6 cycles maximum; Ibrutinib dosed from daily starting day 3

- **Dose reductions;**
 - 4 patients required dose reduction of ibrutinib
 - Febrile neutropenia (FN) G3 (N=2)
 - Diarrhea G3 (N=1)
 - Prolonged bleed time (N=1)
 - 2 patients required dose reduction of doxorubicin due to FN
 - 7 patients required dose reduction of vincristine with the majority in cycle 4/5

- **Efficacy (N=22)**
 - ORR 100%: CR 91%, PR 9%
 - Non-GC DLBCL: CR 4/4
 - GC DLBCL: CR 12/14, PCR 2/14
 - Not assigned: CR 4/4

Younes et al. ASH 2013, Abstract 852
PHEONIX (NCT01855750): Ibrutinib in Combination With R-CHOP in Subjects With Newly Diagnosed Non-Germinal Center Diffuse Large B-Cell Lymphoma, Phase 3, double-blind, placebo-controlled

Inclusion
- DLBCL, non-GC, untreated
- Stage II (not candidates for RT), III, IV
- ≥1 measurable site
- R-IPI ≥ 1
- ECOG 0-2
- LVEF WNL

Exclusion
- Major surgery within 4 weeks
- CNS disease
- Prior indolent lymphoma
- Warfarin
- Concomitant CYP3A inhibitors

Sample Size/Statistical Plan
- Sample size: 800
- Study completion: 50% deaths or 7 years

ACCURAL COMPLETE
- Interim analysis after 270 EFS events
- Cure 40 to 50%; HR for uncured 0.75

Double-blind, placebo controlled
Randomization 1:1

- **Arm A:** placebo + R-CHOP × 4
- **Arm A:** placebo + R-CHOP × 2-4
- **Arm B:** ibrutinib + R-CHOP × 4
- **Arm B:** ibrutinib + R-CHOP × 2-4

Interim Evaluation
NR off study

EOT Evaluation
Lugano Revised Criteria

Study Start Date:
- September 2013

Estimated Study Completion Date:
- June 2020

Estimated Primary Completion Date:
- June 2018

Evaluation
- Interim evaluation after cycle 4
- EOT (6-8 cycles) FDG-PET

Clinical Endpoints
- **Primary:** Event-free survival
- **Secondary:** PFS, OS, CRR, QOL, ibrutinib: clearance, volume of distribution, AUC, minimal concentration, AEs

Stratifications
- RIPI 1-2 v 3-5
- US v Rest of World
- 6 v 8 cycles
Cell of origin in DLBCL

- Cell of origin identifies tumors with distinct biology
- Determination of cell of origin by IHC is inexact, GEP of FFPE is superior and emerging as a clinical assay
- Prognostic significance of COO still controversial
 - Retrospective studies consistently demonstrate GCB with better outcomes than ABC
 - Prospective studies have not always confirmed this?
 - Accrual biases?
- Treatments appear to be influenced by cell of origin
 - Lenalidomide and ibrutinib have activity in ABC DLBCL explained by underlying biology
- Somatic mutations, chromosomal amplification and loss, epigenetic changes, and expression of particular genes (MYC, BCL2 and BCL6) also influence outcome
- COO is an important consideration but is not the only factor that influences treatment and outcome
Lymphoma Disease Management Team

Lymphoma Service
John Gerecitano
Paul Hamlin
Steve Horwitz
Matt Matasar
Alison Moskowitz
Craig Moskowitz
Ariela Noy
Lia Palomba
Carol Portlock
Jonathan Schatz
David Straus
Anas Younes, Chief
Andrew Zelenetz

Lymphoma Transplant Program
Matt Matasar
Craig Sauter
Craig Moskowitz
Juliet Barker
Jenna Goldberg
Miguel Perales
Sergio Giralt

Radiation Oncology
Joachim Yahalom

Hematopathology
Ahmet Dogan
Maria Arcila
April Chiu
Oscar Lin
Chris Park
David Park
Filiz Sen

Nuclear Medicine
Heiko Schoder
Neetha Pandit-Tasker
Jorge Carasquillo

Radiology
James Caravelli
Jurgen Rademaker
Gary Ulaner

Copyright 2016©, National Comprehensive Cancer Network®. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN®.